pH-driven optical changes of platinum(II) complexes having carboxy-appended salophen ligands.

Dalton Trans

Department of Material Science, Graduate School of Science, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.

Published: July 2023

Platinum(II) complexes with salophen ligands bearing carboxy substituents at different positions, [Pt{(COOH)-salophen}] ( = 2 (1), 3 (2), 1 (3)), were synthesized and characterized by acquiring UV-vis and luminescence spectra. These complexes exhibited systematic variations in absorption spectra depending on the number of carboxy groups, and this effect was attributed to metal-ligand charge transfer with support from density functional theory calculations. The luminescence properties of these complexes were also correlated with structural differences. Complexes 1-3 showed systematic spectral changes by addition of organic acid and base, respectively. This is based on the protonation/deprotonation of the carboxy substituents. Furthermore, aggregation-induced spectra change was investigated in DMSO-HO mixtures with various proportions of water. Peak shifts in the range of 95 to 105 nm occurred in the absorption spectra in conjunction with pH changes. These variations resulted from molecular aggregation and diffusion associated with protonation/deprotonation of the carboxy groups. Variations in luminescence emission intensity and peak shifts were also observed. This work provides new insights into the correlations between the optical properties of carboxy-appended molecular complexes and pH changes and will assist in the future design of pH sensing devices based on molecular metal complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3dt00956dDOI Listing

Publication Analysis

Top Keywords

platinumii complexes
8
salophen ligands
8
carboxy substituents
8
absorption spectra
8
carboxy groups
8
protonation/deprotonation carboxy
8
peak shifts
8
complexes
7
ph-driven optical
4
changes
4

Similar Publications

Platinum(II) complexes prevail as first-line treatment for many cancers but are associated with serious side effects and resistance development. Picoplatin emerged as a promising alternative to circumvent GSH-induced tumor resistance by introducing a bulky 2-picoline ligand. Although clinical studies were encouraging, picoplatin did not receive approval.

View Article and Find Full Text PDF

The discovery of cisplatin (cisPt) as an effective anticancer agent was a milestone in the health industry. Despite its success, undesired side effects and acquired resistance still limit the therapeutic usefulness of cisPt. Intrastrand adduct formation at consecutive purines and structural modifications of DNA caused by platinum(II) complexes are important factors for antitumor efficacy.

View Article and Find Full Text PDF

Transition metal complexes are well-known for their efficient light emission and are promising for applications ranging from bioimaging to light-emitting diodes. In solution, interactions between the metal centers of two complexes become possible and drastically change the photophysical properties. For real-world devices, solid-state materials consisting of these molecules are preferable.

View Article and Find Full Text PDF

Recent advances in ruthenium (III) complex-loaded nanomaterial for enhanced cancer therapy efficacy.

Drug Dev Ind Pharm

January 2025

Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, China.

Objective: Amid the escalating global cancer incidence, the development of effective and safe anticancer drugs is a critical priority in medical research. Addressing the clinical shortcomings of ruthenium-based anticancer drugs are currently a prominent focus of research.

Significance And Methods: Since the pioneering work with platinum derivatives, significant progress has been made in the fundamental studies of metal complexes for the treatment of a wide range of cancers, and there has been a growing interest in their properties and biomedical applications.

View Article and Find Full Text PDF

Carbazolylpyridine ()-based tetradentate platinum(II) complexes containing fused 6/5/6 metallocycles.

Dalton Trans

January 2025

College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.

A series of carbazolylpyridine ()-based 6/5/6 Pt(II) complexes featuring tetradentate ligands with nitrogen or oxygen atoms as bridging groups was designed and synthesized, and the bridging nitrogen atoms were derived from acridinyl (Ac), azaaceridine (AAc) and carbazole (Cz). Systematic experimental and theoretical studies reveal that the ligand structures have a significant effect on the electrochemical, photophysical and excited state properties of these complexes. Their oxidation processes mainly occur on the carbazole-Pt moieties, whereas the reduction processes typically occur on the electron-deficient pyridine (Py) moieties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!