A TriPPPro-Nucleotide Reporter with Optimized Cell-Permeable Dyes for Metabolic Labeling of Cellular and Viral DNA in Living Cells.

Angew Chem Int Ed Engl

Department of Chemistry, Faculty of Sciences, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany.

Published: September 2023

The metabolic labeling of nucleic acids in living cells is highly desirable to track the dynamics of nucleic acid metabolism in real-time and has the potential to provide novel insights into cellular biology as well as pathogen-host interactions. Catalyst-free inverse electron demand Diels-Alder reactions (iEDDA) with nucleosides carrying highly reactive moieties such as axial 2-trans-cyclooctene (2TCOa) would be an ideal tool to allow intracellular labeling of DNA. However, cellular kinase phosphorylation of the modified nucleosides is needed after cellular uptake as triphosphates are not membrane permeable. Unfortunately, the narrow substrate window of most endogenous kinases limits the use of highly reactive moieties. Here, we apply our TriPPPro (triphosphate pronucleotide) approach to directly deliver a highly reactive 2TCOa-modified 2'-deoxycytidine triphosphate reporter into living cells. We show that this nucleoside triphosphate is metabolically incorporated into de novo synthesized cellular and viral DNA and can be labeled with highly reactive and cell-permeable fluorescent dye-tetrazine conjugates via iEDDA to visualize DNA in living cells directly. Thus, we present the first comprehensive method for live-cell imaging of cellular and viral nucleic acids using a two-step labeling approach.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202308271DOI Listing

Publication Analysis

Top Keywords

living cells
16
highly reactive
16
cellular viral
12
metabolic labeling
8
viral dna
8
dna living
8
nucleic acids
8
reactive moieties
8
cellular
6
highly
5

Similar Publications

Compared to fluorescence, second harmonic generation (SHG) has recently emerged as an excellent signal for imaging probes due to its unmatched advantages in terms of no photobleaching, no phototoxicity, no signal saturation, as well as the superior imaging accuracy with excellent avoidance of background noise. Existing SHG probes are constructed from heavy metals and are cellular exogenous, presenting with high cytotoxicity, difficult cellular uptake, and the limitation of non-heritability. We, therefore, initially propose an innovative gene-encoded bioprotein SHG probe derived from Autographa californica nuclear polyhedrosis virus (AcMNPV) polyhedrin.

View Article and Find Full Text PDF

Introduction: Deciphering the diverse molecular mechanisms in living Alzheimer's disease (AD) patients is a big challenge but is pivotal for disease prognosis and precision medicine development.

Methods: Utilizing an optimal transport approach, we conducted graph-based mapping of transcriptomic profiles to transfer AD subtype labels from ROSMAP monocyte samples to ADNI and ANMerge peripheral blood mononuclear cells. Subsequently, differential expression followed by comparative pathway and diffusion pseudotime analysis were applied to each cohort to infer the progression trajectories.

View Article and Find Full Text PDF

Plasma Proteomic Signature as a Predictor of Age Advancement in People Living With HIV.

Aging Cell

January 2025

Department of Internal Medicine and Radboud Center of Infectious Diseases, Radboudumc, Radboud University, Nijmegen, The Netherlands.

Due to the increased burden of non-AIDS-related comorbidities in people living with HIV (PLHIV), identifying biomarkers and mechanisms underlying premature aging and the risk of developing age-related comorbidities is a priority. Evidence suggests that the plasma proteome is an accurate source for measuring biological age and predicting age-related clinical outcomes. To investigate whether PLHIV on antiretroviral therapy (ART) exhibit a premature aging phenotype, we profiled the plasma proteome of two independent cohorts of virally suppressed PLHIV (200HIV and 2000HIV) and one cohort of people without HIV (200FG) using O-link technology.

View Article and Find Full Text PDF

We investigated the and uses of pamoic acid functionalized gold nanoparticles (PA@AuNPs), with a focus on determining their safety and potential toxicity in living beings. To test this theory, the bacterial interaction of PA@AuNPs was studied using , , and cultures, as well as the inhibition of the bovine serum albumin (BSA) protein. The real-time polymerase chain reaction (RT-PCR) is used to measure the expression of target genes.

View Article and Find Full Text PDF

Biphasic Coacervation Controlled by Kinetics as Studied by De Novo-Designed Peptides.

Langmuir

January 2025

Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Coacervation is generally treated as a liquid-liquid phase separation process and is controlled mainly by thermodynamics. However, kinetics could make a dominant contribution, especially in systems containing multiple interactions. In this work, using peptides of (XXLY)SSSGSS to tune the charge density and the degree of hydrophobicity, as well as to introduce secondary structures, we evaluated the effect of kinetics on biphasic coacervates formed by peptides with single-stranded oligonucleotides and quaternized dextran at varying pH values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!