Genome engineering has become more accessible thanks to the CRISPR-Cas9 gene-editing system. However, using this technology in synthetic organs called "organoids" is still very inefficient. This is due to the delivery methods for the CRISPR-Cas9 machinery, which include electroporation of CRISPR-Cas9 DNA, mRNA, or ribonucleoproteins containing the Cas9-gRNA complex. However, these procedures are quite toxic for the organoids. Here, we describe the use of the "nanoblade (NB)" technology, which outperformed by far gene-editing levels achieved to date for murine- and human tissue-derived organoids. We reached up to 75% of reporter gene knockout in organoids after treatment with NBs. Indeed, high-level NB-mediated knockout for the androgen receptor encoding gene and the cystic fibrosis transmembrane conductance regulator gene was achieved with single gRNA or dual gRNA containing NBs in murine prostate and colon organoids. Likewise, NBs achieved 20%-50% gene editing in human organoids. Most importantly, in contrast to other gene-editing methods, this was obtained without toxicity for the organoids. Only 4 weeks are required to obtain stable gene knockout in organoids and NBs simplify and allow rapid genome editing in organoids with little to no side effects including unwanted insertion/deletions in off-target sites thanks to transient Cas9/RNP expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331042PMC
http://dx.doi.org/10.1016/j.omtn.2023.06.004DOI Listing

Publication Analysis

Top Keywords

organoids
9
genome editing
8
human organoids
8
gene knockout
8
knockout organoids
8
gene
5
nanoblades allow
4
allow high-level
4
high-level genome
4
editing murine
4

Similar Publications

Alveolar type 2 (AT2) cells maintain lung health by acting as stem cells and producing pulmonary surfactant. AT2 dysfunction underlies many lung diseases, including interstitial lung disease (ILD), in which some inherited forms result from the mislocalization of surfactant protein C (SFTPC) variants. Lung disease modeling and dissection of the underlying mechanisms remain challenging due to complexities in deriving and maintaining human AT2 cells ex vivo.

View Article and Find Full Text PDF

Research on pancreatic cancer has transformed with the advent of organoid technology, providing a better platform that closely mimics cancer biology in vivo. This review highlights the critical advancements facilitated by pancreatic organoid models in understanding disease progression, evaluating therapeutic responses, and identifying biomarkers. These three-dimensional cultures enable the proper recapitulation of the cellular architecture and genetic makeup of the original tumors, providing insights into the complex molecular and cellular dynamics at various stages of pancreatic ductal adenocarcinoma (PDAC).

View Article and Find Full Text PDF

Background: Obesity and overweight are associated with low-grade inflammation induced by adipose tissue expansion and perpetuated by altered intestinal homeostasis, including increased epithelial permeability. Intestinal epithelium functions are supported by intestinal epithelial cells (IEC) mitochondria function.

Methods And Results: Here, we report that diet-induced obesity (DIO) in mice induces lipid metabolism adaptations favoring lipid storage in IEC together with reduced number, altered dynamics and diminished oxidative phosphorylation activity of IEC mitochondria.

View Article and Find Full Text PDF

Virulence expression difference to intestinal cells of different pathogenic Listeria monocytogenes contaminating sausages after simulated digestive tract.

Int J Food Microbiol

January 2025

State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China. Electronic address:

This study investigated the difference in survival among Listeria monocytogenes (LM) 10403S (highly pathogenic strain) and M7 (low pathogenic strain) in sausage under a simulated digestive environment, and established intestinal organoids and macrophages co-culture model to further explore the virulence expression difference to intestinal cells between LM 10403S and M7 after in vitro gastrointestinal digestion. Results showed that, compared with LM M7, LM 10403S exhibited a high survival rate during in vitro digestion, which may be due to the increased expression of stress response-related genes. In addition, the expression of virulence genes in LM 10403S was significantly higher than in LM M7 under the gastrointestinal environment.

View Article and Find Full Text PDF

Microfluidic and Computational Tools for Neurodegeneration Studies.

Annu Rev Chem Biomol Eng

January 2025

1Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; email:

Understanding the molecular, cellular, and physiological components of neurodegenerative diseases (NDs) is paramount for developing accurate diagnostics and efficacious therapies. However, the complexity of ND pathology and the limitations associated with conventional analytical methods undermine research. Fortunately, microfluidic technology can facilitate discoveries through improved biomarker quantification, brain organoid culture, and small animal model manipulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!