Introduction: Decoding brain activities is one of the most popular topics in neuroscience in recent years. And deep learning has shown high performance in fMRI data classification and regression, but its requirement for large amounts of data conflicts with the high cost of acquiring fMRI data.
Methods: In this study, we propose an end-to-end temporal contrastive self-supervised learning algorithm, which learns internal spatiotemporal patterns within fMRI and allows the model to transfer learning to datasets of small size. For a given fMRI signal, we segmented it into three sections: the beginning, middle, and end. We then utilized contrastive learning by taking the end-middle (i.e., neighboring) pair as the positive pair, and the beginning-end (i.e., distant) pair as the negative pair.
Results: We pretrained the model on 5 out of 7 tasks from the Human Connectome Project (HCP) and applied it in a downstream classification of the remaining two tasks. The pretrained model converged on data from 12 subjects, while a randomly initialized model required 100 subjects. We then transferred the pretrained model to a dataset containing unpreprocessed whole-brain fMRI from 30 participants, achieving an accuracy of 80.2 ± 4.7%, while the randomly initialized model failed to converge. We further validated the model's performance on the Multiple Domain Task Dataset (MDTB), which contains fMRI data of 26 tasks from 24 participants. Thirteen tasks of fMRI were selected as inputs, and the results showed that the pre-trained model succeeded in classifying 11 of the 13 tasks. When using the 7 brain networks as input, variations of the performance were observed, with the visual network performed as well as whole brain inputs, while the limbic network almost failed in all 13 tasks.
Discussion: Our results demonstrated the potential of self-supervised learning for fMRI analysis with small datasets and unpreprocessed data, and for analysis of the correlation between regional fMRI activity and cognitive tasks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10330812 | PMC |
http://dx.doi.org/10.3389/fnins.2023.1199312 | DOI Listing |
BMC Med Inform Decis Mak
January 2025
Department of Clinical Pharmacy and Translational Science, The University of Tennessee Health Science Center, Memphis, TN, USA.
Background: The COVID-19 pandemic has highlighted the crucial role of artificial intelligence (AI) in predicting mortality and guiding healthcare decisions. However, AI models may perpetuate or exacerbate existing health disparities due to demographic biases, particularly affecting racial and ethnic minorities. The objective of this study is to investigate the demographic biases in AI models predicting COVID-19 mortality and to assess the effectiveness of transfer learning in improving model fairness across diverse demographic groups.
View Article and Find Full Text PDFSci Rep
January 2025
Colloid Chemistry, Department of Chemistry, University of Konstanz, Universitaetsstrasse 10, 78464, Konstanz, Germany.
Complex structures can be understood as compositions of smaller, more basic elements. The characterization of these structures requires an analysis of their constituents and their spatial configuration. Examples can be found in systems as diverse as galaxies, alloys, living tissues, cells, and even nanoparticles.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
The current gold standard for the study of human movement is the marker-based motion capture system that offers high precision but constrained by costs and controlled environments. Markerless pose estimation systems emerge as ecological alternatives, allowing unobtrusive data acquisition in natural settings. This study compares the performance of two popular markerless systems, OpenPose (OP) and DeepLabCut (DLC), in assessing locomotion.
View Article and Find Full Text PDFJ Neurosurg
January 2025
1Department of Neurosurgery, St. Olav's University Hospital, Trondheim, Norway.
Objective: The extent of resection (EOR) and postoperative residual tumor (RT) volume are prognostic factors in glioblastoma. Calculations of EOR and RT rely on accurate tumor segmentations. Raidionics is an open-access software that enables automatic segmentation of preoperative and early postoperative glioblastoma using pretrained deep learning models.
View Article and Find Full Text PDFPLoS One
January 2025
School of Optometry and Vision Science, UNSW Sydney, Sydney, New South Wales, Australia.
Purpose: In this study, we investigated the performance of deep learning (DL) models to differentiate between normal and glaucomatous visual fields (VFs) and classify glaucoma from early to the advanced stage to observe if the DL model can stage glaucoma as Mills criteria using only the pattern deviation (PD) plots. The DL model results were compared with a machine learning (ML) classifier trained on conventional VF parameters.
Methods: A total of 265 PD plots and 265 numerical datasets of Humphrey 24-2 VF images were collected from 119 normal and 146 glaucomatous eyes to train the DL models to classify the images into four groups: normal, early glaucoma, moderate glaucoma, and advanced glaucoma.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!