Recirculating aquaculture systems (RAS) pose unique challenges in microbial community management since they rely on a stable community with key target groups, both in the RAS environment and in the host (in this case, ). Our goal was to determine how much of the sole microbiome is inherited from the egg stage, and how much is acquired during the remainder of the sole life cycle in an aquaculture production batch, especially regarding potentially probiotic and pathogenic groups. Our work comprises sole tissue samples from 2 days before hatching and up to 146 days after hatching (-2 to 146 DAH), encompassing the egg, larval, weaning, and pre-ongrowing stages. Total DNA was isolated from the different sole tissues, as well as from live feed introduced in the first stages, and 16S rRNA gene was sequenced (V6-V8 region) using the Illumina MiSeq platform. The output was analysed with the DADA2 pipeline, and taxonomic attribution with SILVAngs version 138.1. Using the Bray-Curtis dissimilarity index, both age and life cycle stage appeared to be drivers of bacterial community dissimilarity. To try to distinguish the inherited (present since the egg stage) from the acquired community (detected at later stages), different tissues were analysed at 49, 119 and 146 DAH (gill, intestine, fin and mucus). Only a few genera were inherited, but those that were inherited accompany the sole microbiome throughout the life cycle. Two genera of potentially probiotic bacteria ( and ) were already present in the eggs, while others were acquired later, in particularly, forty days after live feed was introduced. The potentially pathogenic genera and were inherited from the eggs, while and seemed to be acquired at 49 and 119 DAH, respectively. Significant co-occurrence was found between and both and . On the other hand, significantly negative correlations were detected between and , , and . Our work reinforces the importance of life cycle studies, which can contribute to improve production husbandry strategies. However, we still need more information on this topic as repetition of patterns in different settings is essential to confirm our findings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331008 | PMC |
http://dx.doi.org/10.3389/fmicb.2023.1188876 | DOI Listing |
Adv Mater
January 2025
Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
Anisotropic carrier transport and deep-level defect of antimony selenosulfide (Sb(S,Se)) absorber are two vital auses restraining the photovoltaic performance of this emerging thin-film solar cell. Herein, chelate engineering is proposed to prepare high-quality Sb(S,Se) film based on hydrothermal deposition approach, which realizes desirable carrier transport and passivated defects by using tetrahedral PO ion in dibasic sodium phosphate (NaHPO, DSP). The PO Lewis structure, on one hand in the form of [(SbO)(PO)] chelate, can adsorb on the polar planes of cadmium sulfide (CdS) layer, promoting the heterogeneous nucleation, and on the other hand, the tetrahedral PO inhibits horizontal growth of (SbS(e)) ribbons due to size effects, thus achieving desirable [hk1] orientation.
View Article and Find Full Text PDFGigaByte
December 2024
Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 904-0495, Onna-son, Okinawa, Japan.
The number of high-quality genomes is rapidly increasing across taxa. However, it remains limited for coral reef fish of the Pomacentrid family, with most research focused on anemonefish. Here, we present the first assembly for a Pomacentrid of the genus .
View Article and Find Full Text PDFChem Sci
January 2025
School of Materials Science and Engineering, Xiangtan University Xiangtan 411105 China
Poly(ethylene oxide) (PEO)-based solid-state polymer electrolyte (SPE) is a promising candidate for the next generation of safer lithium-metal batteries. However, the serious side reaction between PEO and lithium metal and the uneven deposition of lithium ions lead to the growth of lithium dendrites and the rapid decline of battery cycle life. Building a LiF-rich solid electrolyte interface (SEI) layer is considered to be an effective means to solve the above problems.
View Article and Find Full Text PDFMater Horiz
January 2025
National local joint engineering research center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
The stable operation of high-capacity lithium-sulfur batteries (LSBs) has been hampered by slow conversion kinetics of lithium polysulfides (LiPSs) and instability of the lithium metal anodes. Herein, 6-(dibutylamino)-1,3,5-triazine-2,4-thiol (DTD) is introduced as a functional additive for accelerating the kinetics of cathodic conversion and modulating the anode interface. We proposed that a coordination interaction mechanism drives the polysulfide conversion and modulates the Li solvated structure during the binding of the N-active site of DTD to LiPSs and lithium salts.
View Article and Find Full Text PDFGenes Cells
January 2025
Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, Nanjing, China.
Serine-arginine protein kinases (SRPKs) play important roles in diverse biological processes such as alternative splicing and cell cycle. However, the functions of SRPKs in DNA damage response remain unclear. Here we characterized the function of SRPKs homolog Dsk1 in regulating DNA repair in the fission yeast Schizosaccharomyces pombe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!