The effect of cholesterol on biological membranes is important in biochemistry. In this study, a polymer system is used to simulate the consequences of varying cholesterol content in membranes. The system consists of an AB-diblock copolymer, a hydrophilic homopolymer hA, and a hydrophobic rigid homopolymer C, corresponding to phospholipid, water, and cholesterol, respectively. The effect of the C-polymer content on the membrane is studied within the framework of a self-consistent field model. The results show that the liquid-crystal behavior of B and C has a great influence on the chemical potential of cholesterol in bilayer membranes. The effects of the interaction strength between components, characterized by the Flory-Huggins parameters and the Maier-Saupe parameter, were studied. Some consequences of adding a coil headgroup to the C-rod are presented. Results of our model are compared to experimental findings for cholesterol-containing lipid bilayer membranes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239197 | PMC |
http://dx.doi.org/10.1039/d3sm00804e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!