Nanoscale
ITQ, Instituto de Tecnología Química, Universitat Politècnica de València (UPV), Av. de los Naranjos S/N 46022, Valencia, España.
Published: July 2023
The pursuit of new catalysts for the aqueous transformation of biomass-derived compounds under mild conditions is an active area of research. In the present work, the selective hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-bishydroxymethylfuran (BHMF) was efficiently accomplished in water at 25 °C and 5 bar H pressure (after 1 h full conversion and 100% selectivity). For this, a novel nanocatalyst based on graphene-supported Pt NPs decorated with Sn-butyl fragments (-SnBu) has been used. More specifically, Pt NPs supported on reduced graphene oxide (rGO) were functionalized with different equivalents (0.2, 0.5, 0.8 and 1 equiv.) of tributyltin hydride (BuSnH) following a surface organometallic chemistry (SOMC) approach. The synthesized catalysts (Pt@rGO/Snx) were fully characterized by state-of-the-art techniques, confirming the presence of Sn-butyl fragments grafted on the platinum surface. The higher the amount of surface -SnBu, the higher the activity of the catalyst, reaching a maximum conversion with Pt@rGO/Sn0.8. Indeed, the latter has proven to be one of the most active catalysts reported to date for the aqueous hydrogenation of HMF to BHMF (estimated TOF = 666.7 h). Furthermore, Pt@rGO/Sn0.8 has been demonstrated to be an efficient catalyst for the reduction of other biomass-derived compounds in water, such as furfural, vanillin or levoglucosenone. Here, the catalytic activity is remarkably boosted by Sn-butyl fragments located on the platinum surface, giving a catalyst several times faster than non-functionalized Pt@rGO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3nr02083e | DOI Listing |
Nanoscale
January 2025
Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA.
Obesity, a chronic metabolic disorder characterized by excessive body weight and adipose tissue accumulation, is intricately linked to a spectrum of health complications. It is driven by a confluence of factors, including gut microbiota dysbiosis, inflammation, and oxidative stress, which are pivotal in its pathogenesis. A multifaceted therapeutic strategy that targets these interrelated pathways is essential for effective obesity management.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China.
The biomass-derived furan aldehydes furfural (FF) and 5-hydroxymethylfurfural (HMF) are versatile platform chemicals used to produce various value-added chemicals through further valorization processes. Selectively reducing C═O in FF and HMF molecules to form furfuryl alcohol (FAL) and 2,5-bis(hydroxymethyl)furan (BHMF), represents an important research field in upgrading biomass-based furan compounds. Currently, the reduction of furan aldehydes to furan alcohols through chemical transformation often leads to unavoidable environmental issues and the formation of potential byproducts.
View Article and Find Full Text PDFSci Rep
January 2025
Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-0012, Japan.
Lactones play crucial roles in various fields, such as pharmaceuticals, food, and materials science, due to their unique structures and diverse biological activities. However, certain lactones are difficult to obtain in large quantities from natural sources, necessitating their synthesis to study their properties and potential. In this study, we investigated the photocatalytic conversion of D-fructose, a biomass-derived and naturally abundant sugar, using a TiO photocatalyst under light irradiation in ambient conditions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University Gold Coast Campus, Gold Coast, Queensland, 4222, Australia).
Converting biomass-derived molecules like 5-hydroxymethylfurfural (HMF) into value-added products alongside hydrogen production using renewable energy offers significant opportunities for sustainable chemical and energy production. Yet, HMF electrooxidation requires strong alkaline conditions and membranes for efficient conversion. These harsh conditions destabilize HMF, leading to humin formation and reduced product purity, meanwhile membranes increase costs.
View Article and Find Full Text PDFChemSusChem
January 2025
Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, IT-20133, Milano, Italy.
The conversion of bio-based molecules into valuable chemicals is essential for advancing sustainable processes and addressing global resource challenges. However, conventional catalytic methods often demand harsh conditions and suffer from low product selectivity. This study introduces a series of bifunctional PdPt catalysts supported on TiO, designed for achieving selective and mild-temperature catalysis in biomass conversion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.