A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Engineering Efficient CAR-T Cells via Electroactive Nanoinjection. | LitMetric

Chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising cell-based immunotherapy approach for treating blood disorders and cancers, but genetically engineering CAR-T cells is challenging due to primary T cells' sensitivity to conventional gene delivery approaches. The current viral-based method can typically involve significant operating costs and biosafety hurdles, while bulk electroporation (BEP) can lead to poor cell viability and functionality. Here, a non-viral electroactive nanoinjection (ENI) platform is developed to efficiently negotiate the plasma membrane of primary human T cells via vertically configured electroactive nanotubes, enabling efficient delivery (68.7%) and expression (43.3%) of CAR genes in the T cells, with minimal cellular perturbation (>90% cell viability). Compared to conventional BEP, the ENI platform achieves an almost threefold higher CAR transfection efficiency, indicated by the significantly higher reporter GFP expression (43.3% compared to 16.3%). By co-culturing with target lymphoma Raji cells, the ENI-transfected CAR-T cells' ability to effectively suppress lymphoma cell growth (86.9% cytotoxicity) is proved. Taken together, the results demonstrate the platform's remarkable capacity to generate functional and effective anti-lymphoma CAR-T cells. Given the growing potential of cell-based immunotherapies, such a platform holds great promise for ex vivo cell engineering, especially in CAR-T cell therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202304122DOI Listing

Publication Analysis

Top Keywords

car-t cells
12
electroactive nanoinjection
8
car-t cell
8
cell therapy
8
engineering car-t
8
cell viability
8
eni platform
8
expression 433%
8
car-t
6
cells
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!