The primary auditory cortex and other early auditory cortical areas lie on Heschl's gyrus within the Sylvian fissure. On the adjacent lateral surface of the superior temporal gyrus, the cortex processes higher order auditory information leading to auditory perception. On the ventral surface of the temporal lobe in the primate brain, there are areas that process higher order visual information leading to visual perception. These sensory-specific auditory and visual processing regions are separated by areas that integrate multisensory information within the deep superior temporal sulcus in both the macaque monkey and human brains. In the human brain, the multisensory integration cortex expands and forms the adjacent middle temporal gyrus. The expansion of this multisensory region in the language-dominant hemisphere of the human brain is critical for the emergence of semantic processing, namely, the processing of conceptual information that is not sensory specific but rather relies on multisensory integration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.25521 | DOI Listing |
J Affect Disord
January 2025
Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Institute of Mental Health, Shenzhen, China. Electronic address:
Background: The potential pairwise connections among high-sensitivity C-reactive protein (hs-CRP), striatum-based circuits, and anhedonia in adolescent depression are not clear. This study aimed to explore whether hs-CRP levels in adolescents with depression influence anhedonia via alterations of striatum-based functional connectivity (FC).
Methods: A total of 201 adolescents (92 with depressive episodes with anhedonia (anDE), 58 with DE without anhedonia (non-anDE), and 51 healthy controls (HCs)) underwent resting-state functional magnetic resonance imaging (fMRI) and completed the anhedonia subscale of the Children's Depression Inventory (CDI).
Pflugers Arch
January 2025
Division of Neurophysiology, Department of Physiology, Hyogo Medical University, Hyogo, 663 8501, Japan.
The nucleus tractus solitarius (NTS) contains neurons that relay sensory swallowing commands information from the oropharyngeal cavity and swallowing premotor neurons of the dorsal swallowing group (DSG). However, the spatio-temporal dynamics of the interplay between the sensory relay and the DSG is not well understood. Here, we employed fluorescence imaging after microinjection of the calcium indicator into the NTS in an arterially perfused brainstem preparation of rat (n = 8) to investigate neuronal population activity in the NTS in response to superior laryngeal nerve (SLN) stimulation.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Physical Therapy, Hangzhou Geriatric Hospital, 310022 Hangzhou, Zhejiang, China.
Background: Observation, execution, and imitation of target actions based on mirror neuron network (MNN) have become common physiotherapy strategies. Electrical stimulation (ES) is a common intervention to improve muscle strength and motor control in rehabilitation treatments. It is possible to enhance MNN's activation by combining motor execution (ME) and motor imitation (MI) with ES simultaneously.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China.
Real-time and accurate traffic forecasting aids in traffic planning and design and helps to alleviate congestion. Addressing the negative impacts of partial data loss in traffic forecasting, and the challenge of simultaneously capturing short-term fluctuations and long-term trends, this paper presents a traffic forecasting model, D-MGDCN-CLSTM, based on Multi-Graph Gated Dilated Convolution and Conv-LSTM. The model uses the DTWN algorithm to fill in missing data.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Mechanical and Vehicle Engineering, Changchun University, Changchun 130022, China.
Predicting the Remaining Useful Life (RUL) is vital for ensuring the reliability and safety of equipment and components. This study introduces a novel method for predicting RUL that utilizes the Convolutional Block Attention Module (CBAM) to address the problem that Convolutional Neural Networks (CNNs) do not effectively leverage data channel features and spatial features in residual life prediction. Firstly, Fast Fourier Transform (FFT) is applied to convert the data into the frequency domain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!