Objective: To systematically evaluate the efficacy and safety of FDA-approved isocitrate dehydrogenase (IDH) inhibitors in the treatment of IDH-mutated acute myeloid leukemia (AML).

Methods: We used R software to conduct a meta-analysis of prospective clinical trials of IDH inhibitors in the treatment of IDH-mutated AML published in PubMed, Embase, Clinical Trials, Cochrane Library and Web of Science from inception to November 15th, 2022.

Results: A total of 1109 IDH-mutated AML patients from 10 articles (11 cohorts) were included in our meta-analysis. The CR rate, ORR rate, 2-year survival (OS) rate and 2-year event-free survival (EFS) rate of newly diagnosed IDH-mutated AML (715 patients) were 47%, 65%, 45% and 29%, respectively. The CR rate, ORR rate, 2-year OS rate, median OS and median EFS of relapsed or refractory (R/R) IDH-mutated AML (394 patients) were 21%, 40%, 15%, 8.21 months and 4.73 months, respectively. Gastrointestinal adverse events were the most frequently occurring all-grade adverse events and hematologic adverse events were the most frequently occurring ≥ grade 3 adverse events.

Conclusion: IDH inhibitor is a promising treatment for R/R AML patients with IDH mutations. For patients with newly diagnosed IDH-mutated AML, IDH inhibitors may not be optimal therapeutic agents due to low CR rates. The safety of IDH inhibitors is controllable, but physicians should always pay attention to and manage the differentiation syndrome adverse events caused by IDH inhibitors. The above conclusions need more large samples and high-quality RCTs in the future to verify.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10334617PMC
http://dx.doi.org/10.1186/s13148-023-01529-2DOI Listing

Publication Analysis

Top Keywords

idh inhibitors
24
idh-mutated aml
20
adverse events
16
inhibitors treatment
12
rate 2-year
12
idh
9
efficacy safety
8
safety fda-approved
8
acute myeloid
8
myeloid leukemia
8

Similar Publications

IDH1 mutation inhibits differentiation of astrocytes and glioma cells with low oxoglutarate dehydrogenase expression by disturbing α-ketoglutarate-related metabolism and epigenetic modification.

Life Metab

April 2024

State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.

Isocitrate dehydrogenase (IDH) mutations frequently occur in lower-grade gliomas and secondary glioblastomas. Mutant IDHs exhibit a gain-of-function activity, leading to the production of D-2-hydroxyglutarate (D-2HG) by reducing α-ketoglutarate (α-KG), a central player in metabolism and epigenetic modifications. However, the role of α-KG homeostasis in IDH-mutated gliomagenesis remains elusive.

View Article and Find Full Text PDF

: Anaplastic oligodendrogliomas (AOs) are central nervous system (CNS) World Health Organization (WHO) grade 3 gliomas characterized by isocitrate dehydrogenase (IDH) mutation (m)IDH and 1p/19q codeletion. AOs are typically treated with surgery and chemoradiation. However, chemoradiation can cause detrimental late neurocognitive morbidities and an accelerated disease course.

View Article and Find Full Text PDF

IDH Mutant Cholangiocarcinoma: Pathogenesis, Management, and Future Therapies.

Curr Oncol

January 2025

Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.

Mutations in isocitrate dehydrogenase (IDH) genes are among the most frequently encountered molecular alterations in cholangiocarcinoma (CCA). These neomorphic point mutations endow mutant IDH (mIDH) with the ability to generate an R-enantiomer of 2-hydroxyglutarate (R2HG), a metabolite that drives malignant transformation through aberrant epigenetic signaling. As a result, pharmacologic inhibition of mIDH has become an attractive therapeutic strategy in CCAs harboring this mutation.

View Article and Find Full Text PDF

IDH-mutant low-grade gliomas (LGGs) are slow-growing brain tumors that frequently progress to aggressive high-grade gliomas that have dismal outcomes. In a recent study, Wu and colleagues provide critical insights into the mechanisms underlying malignant progression by analyzing single-cell gene expression and chromatin accessibility across different tumor grades. Their findings support a two-phase model: in early stages, tumors are primarily driven by oligodendrocyte precursor-like cells and epigenetic alterations that silence tumor suppressors like CDKN2A and activate oncogenes such as PDGFRA.

View Article and Find Full Text PDF

The clinical efficacy of isocitrate dehydrogenase (IDH) inhibitors in the treatment of patients with grade 2 IDH-mutant (mIDH) gliomas is a significant therapeutic advancement in neuro-oncology. It expands treatment options beyond traditional radiation therapy and cytotoxic chemotherapy, which may lead to significant long-term neurotoxic effects while extending patient survival. The INDIGO study demonstrated that vorasidenib, a pan-mIDH inhibitor, improved progression-free survival for patients with grade 2 mIDH gliomas following surgical resection or biopsy compared to placebo and was well tolerated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!