In this paper, we show the possibility of creating and identifying the features of an artificial neural network (ANN), which consists of mathematical models of biological neurons. The FitzHugh-Nagumo (FHN) system is used as a paradigmatic model demonstrating basic neuron activities. First, in order to reveal how biological neurons can be embedded within an ANN, we train the ANN with nonlinear neurons to solve a basic image recognition problem with an MNIST database; next, we describe how FHN systems can be introduced into this trained ANN. After all, we show that an ANN with FHN systems inside can be successfully trained with improved accuracy comparing with first trained ANN and then with inserted FHN systems. This approach opens up great opportunities in terms of the direction of analog neural networks, in which artificial neurons can be replaced by more appropriate biological ones.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0152703DOI Listing

Publication Analysis

Top Keywords

biological neurons
12
fhn systems
12
artificial neural
8
neural network
8
models biological
8
trained ann
8
ann
6
neurons
5
symbiosis artificial
4
network models
4

Similar Publications

Dysfunction in fear and stress responses is intrinsically linked to various neurological diseases, including anxiety disorders, depression, and Post-Traumatic Stress Disorder. Previous studies using in vivo models with Immediate-Extinction Deficit (IED) and Stress Enhanced Fear Learning (SEFL) protocols have provided valuable insights into these mechanisms and aided the development of new therapeutic approaches. However, assessing these dysfunctions in animal subjects using IED and SEFL protocols can cause significant pain and suffering.

View Article and Find Full Text PDF

Introduction: The enteric nervous system (ENS) in the wall of the gastrointestinal tract is complex and comprises many neurons, which are differentiated in terms of structure, function and neurochemistry. Neuregulin 1 (NRG 1) is one of the neuronal factors synthesised in the ENS about the distribution and functions of which relatively little is known. The present study is the first description of the distribution of NRG 1 in the ENS in various segments of the porcine small intestine.

View Article and Find Full Text PDF

Introduction: This study explored the effects of prenatal exposure to fumonisins B (FB) on bone innervation in newborn Wistar rats.

Material And Methods: Pregnant dams (n = 6 per group) were assigned to either the control or one of two FB-exposed groups (60 mg or 90 mg/kg body weight) from the 7 day of gestation until parturition. On the day of parturition, one male pup from each litter (n = 6 per group) was randomly selected and euthanised, and their femurs were dissected for analysis.

View Article and Find Full Text PDF

Posttranscriptional Control of Neural Progenitors Temporal Dynamics During Neocortical Development by Syncrip.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.

The development of the mammalian neocortex is precisely regulated by temporal gene expression, yet the temporal regulatory mechanisms of cortical neurogenesis, particularly how radial glial cells (RGCs) sequentially generate deep to superficial neurons, remain unclear. Here, the hnRNP family member Syncrip (hnRNP Q) is identified as a key modulator of superficial neuronal differentiation in neocortical neurogenesis. Syncrip knockout in RGCs disrupts differentiation and abnormal neuronal localization, ultimately resulting in superficial cortical layer defects as well as learning and memory impairments in mice.

View Article and Find Full Text PDF

Protective Effects of Heat-Killed Lactobacilli against Plasma-Induced Neurotoxicity in Multiple Sclerosis.

Probiotics Antimicrob Proteins

January 2025

Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.

Heat-killed lactobacilli seem to have protective effects against oxidative stress and neurotoxicity. This study aimed to evaluate the antioxidant properties of specific heat-killed lactobacilli extracts and determine their neuroprotective effects against the neurotoxicity induced by blood plasma from people with multiple sclerosis (MS). The antioxidant activity of the three heat-killed lactobacilli was measured using the DPPH assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!