A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Direct Laser Writing of the Porous Graphene Foam for Multiplexed Electrochemical Sweat Sensors. | LitMetric

Direct Laser Writing of the Porous Graphene Foam for Multiplexed Electrochemical Sweat Sensors.

ACS Appl Mater Interfaces

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Published: July 2023

Wearable electrochemical sensors provide means to detect molecular-level information from the biochemical markers in biofluids for physiological health evaluation. However, a high-density array is often required for multiplexed detection of multiple markers in complex biofluids, which is challenging with low-cost fabrication methods. This work reports the low-cost direct laser writing of porous graphene foam as a flexible electrochemical sensor to detect biomarkers and electrolytes in sweat. The resulting electrochemical sensor exhibits high sensitivity and low limit of detection for various biomarkers (e.g., the sensitivity of 6.49/6.87/0.94/0.16 μA μM cm and detection limit of 0.28/0.26/1.43/11.3 μM to uric acid/dopamine/tyrosine/ascorbic acid) in sweat. The results from this work open up opportunities for noninvasive continuous monitoring of gout, hydration status, and drug intake/overdose.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c02485DOI Listing

Publication Analysis

Top Keywords

direct laser
8
laser writing
8
writing porous
8
porous graphene
8
graphene foam
8
electrochemical sensor
8
foam multiplexed
4
electrochemical
4
multiplexed electrochemical
4
electrochemical sweat
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!