The previously reported structures of oxytrofalcatins B and C possess a benzoyl indole core. However, following synthesis and NMR comparison of both the proposed structure and the synthesized oxazole, we have revised the structure of oxytrofalcatins B and C as oxazoles. The synthetic route developed herein can further our understanding of the biosynthetic pathways that govern the production of natural 2,5-diaryloxazoles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.3c00691 | DOI Listing |
J Org Chem
July 2023
Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan.
The previously reported structures of oxytrofalcatins B and C possess a benzoyl indole core. However, following synthesis and NMR comparison of both the proposed structure and the synthesized oxazole, we have revised the structure of oxytrofalcatins B and C as oxazoles. The synthetic route developed herein can further our understanding of the biosynthetic pathways that govern the production of natural 2,5-diaryloxazoles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!