A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Morphology-Dependent Interaction of Silica Nanoparticles with Intestinal Cells: Connecting Shape to Barrier Function. | LitMetric

The intestinal compartment ensures nutrient absorption and barrier function against pathogens. Despite decades of research on the complexity of the gut, the adaptive potential to physical cues, such as those derived from interaction with particles of different shapes, remains less understood. Taking advantage of the technological versatility of silica nanoparticles, spherical, rod-shaped, and virus-like materials were synthesized. Morphology-dependent interactions were studied on differentiated Caco-2/HT29-MTX-E12 cells. Contributions of shape, aspect ratio, surface roughness, and size were evaluated considering the influence of the mucus layer and intracellular uptake pathways. Small particle size and surface roughness favored the highest penetration through the mucus but limited interaction with the cell monolayer and efficient internalization. Particles of a larger aspect ratio (rod-shaped) seemed to privilege paracellular permeation and increased cell-cell distances, albeit without hampering barrier integrity. Inhibition of clathrin-mediated endocytosis and chemical modulation of cell junctions effectively tuned these responses, confirming morphology-specific interactions elicited by bioinspired silica nanomaterials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10450799PMC
http://dx.doi.org/10.1021/acs.nanolett.3c00835DOI Listing

Publication Analysis

Top Keywords

silica nanoparticles
8
barrier function
8
aspect ratio
8
surface roughness
8
morphology-dependent interaction
4
interaction silica
4
nanoparticles intestinal
4
intestinal cells
4
cells connecting
4
connecting shape
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!