TRPM7 kinase activity induces amyloid-β degradation to reverse synaptic and cognitive deficits in mouse models of Alzheimer's disease.

Sci Signal

State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.

Published: July 2023

AI Article Synopsis

  • Altered levels of the TRPM7 protein are linked to Alzheimer's disease (AD), where its kinase activity plays a crucial role in degrading toxic amyloid-β (Aβ) aggregates in neurons.
  • Studies showed decreased TRPM7 expression in AD-affected hippocampal tissues, and overexpressing TRPM7 helped prevent synapse loss caused by Aβ.
  • The functional kinase domain of TRPM7 (M7CK) was found to engage with the metalloprotease MMP14, promoting Aβ degradation and potentially reversing cognitive and synaptic deficits in mouse models of AD.

Article Abstract

Altered abundance or activity of the dual-function transient receptor potential melastatin-like 7 (TRPM7) protein is implicated in neurodegenerative disorders, including Alzheimer's disease (AD). Toxic aggregation of amyloid-β (Aβ) in neurons is implicated in AD pathology. Here, we found that the kinase activity of TRPM7 is important to stimulate the degradation of Aβ. TRPM7 expression was decreased in hippocampal tissue samples from patients with AD and two mouse models of AD ( and ). In cultures of hippocampal neurons from mice, overexpression of full-length TRPM7 or of its functional kinase domain M7CK prevented synapse loss induced by exogenous Aβ. In contrast, this neuroprotection was not afforded by overexpression of either the functional ion channel portion alone or a TRPM7 mutant lacking kinase activity. M7CK overexpression in the hippocampus of young and old mice prevented and reversed, respectively, memory deficits, synapse loss, and Aβ plaque accumulation. In both neurons and mice, M7CK interacted with and activated the metalloprotease MMP14 to promote Aβ degradation. Thus, TRPM7 loss in patients with AD may contribute to the associated Aβ pathology.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scisignal.ade6325DOI Listing

Publication Analysis

Top Keywords

kinase activity
12
mouse models
8
alzheimer's disease
8
neurons mice
8
synapse loss
8
trpm7
7
6
trpm7 kinase
4
activity
4
activity induces
4

Similar Publications

Discovery of noncovalent diaminopyrimidine-based Inhibitors for glioblastoma via a dual FAK/DNA targeting strategy.

Eur J Med Chem

January 2025

School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China. Electronic address:

Temozolomide, a widely used alkylating agent for glioblastoma treatment, faces significant challenges due to the development of resistance, which severely impacts patient survival. This underscores the urgent need for novel strategies to overcome this barrier. Focal adhesion kinase (FAK), an intracellular non-receptor tyrosine kinase, is highly expressed in glioblastoma cells and has been identified as a promising therapeutic target for anti-glioblastoma drug development.

View Article and Find Full Text PDF

Insights into NEK2 inhibitors as antitumor agents: From mechanisms to potential therapeutics.

Eur J Med Chem

January 2025

Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:

NEK2, a serine/threonine protein kinase, is integral to mitotic events such as centrosome duplication and separation, microtubule stabilization, spindle assembly checkpoint, and kinetochore attachment. However, NEK2 overexpression leads to centrosome amplification and chromosomal instability, which are significantly associated with various malignancies, including liver, breast, and non-small cell lung cancer. This overexpression could facilitate tumor development and confer resistance to therapy by promoting aberrant cell division and centrosome amplification.

View Article and Find Full Text PDF

Background: Rathke cleft cysts (RCCs) are benign sellar/suprasellar lesions that result from mucin-secreting vestigial remnants within the pars intermedia of the pituitary gland. When symptomatic, they can present with retro-orbital headaches, visual field defects, and/or pituitary dysfunction.

Observations: A 35-year-old female presented with subacute retro-orbital headache, right ptosis, and blurred vision.

View Article and Find Full Text PDF

MTHFD2 promotes breast cancer cell proliferation through IFRD1 RNA m6A methylation-mediated HDAC3/p53/mTOR pathway.

Neoplasma

December 2024

Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.

MTHFD2 is highly overexpressed in breast cancer tissues, indicating that it might be used as a target in breast cancer treatment. This study aims to determine the role of MTHFD2 in breast cancer cell proliferation and the molecular pathways involved. In order to investigate MTHFD2 gene expression and its downstream pathways in breast cancer, we started our inquiry with a bioinformatics analysis.

View Article and Find Full Text PDF

Regarding flotillin knockdown, drug resistance is reversed in colorectal cancer (CRC) cell lines; this is associated with the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway, as our previous experimental results indicated. However, the exact mechanism underlying this pathway remains unclear. PI3K inhibitor and activator were added separately to clarify the role of the PI3K pathway in reversing drug resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!