Airborne hydrocarbon contamination hinders nanomanufacturing, limits characterization techniques, and generates controversies regarding fundamental studies of advanced materials; consequently, we urgently need effective and scalable clean storage techniques. In this work, we propose an approach to clean storage using an ultraclean nanotextured storage medium as a getter. Experiments show that our proposed approach can maintain surface cleanliness for more than 1 week and can even passively clean initially contaminated samples during storage. We theoretically analyzed the contaminant adsorption-desorption process with different values of storage medium surface roughness, and our model predictions showed good agreement with experiments for smooth, nanotextured, and hierarchically textured surfaces, providing guidelines for the design of future clean storage systems. The proposed strategy offers a promising approach for portable and cost-effective storage systems that minimize hydrocarbon contamination in applications requiring clean surfaces, including nanofabrication, device storage and transportation, and advanced metrology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.3c00626 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!