A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

AgCl Addition to Chalcopyrite Compound for Ultra-Low Thermal Conductivity in Realizing High ZT Thermoelectric Materials. | LitMetric

Optimizing the performance of thermoelectric materials by reducing its thermal conductivity is crucial to enhance its thermoelectric efficiency. Novel thermoelectric materials like the CuGaTe compound are hindered by high intrinsic thermal conductivity, which negatively impacts its thermoelectric performance. In this paper, we report that the introduction of AgCl by the solid-phase melting method will influence the thermal conductivity of CuGaTe. The generated multiple scattering mechanisms are expected to reduce the lattice thermal conductivity while maintaining sufficient good electrical properties. The experimental results were supported by first-principles calculations confirming that the doping of the Ag will decrease the elastic constants, bulk modulus, and shear modulus of CuGaTe, which makes the mean sound velocity and Debye temperature of Ag-doped samples lower than those of CuGaTe, indicating the lower lattice thermal conductivity. In addition, the Cl elements within the CuGaTe matrix escaping during the sintering process will create holes of various sizes within the sample. These combined effects of holes and impurities will induce phonon scattering, which further reduces the lattice thermal conductivity. Based on our findings, we conclude that the introduction of AgCl into CuGaTe has shown a lower thermal conductivity without compromising the electrical performance, resulting in an ultra-high ZT value of 1.4 in the (CuGaTe)(AgCl) sample at 823 K.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c05929DOI Listing

Publication Analysis

Top Keywords

thermal conductivity
32
thermoelectric materials
12
lattice thermal
12
thermal
8
conductivity
8
introduction agcl
8
cugate
6
thermoelectric
5
agcl addition
4
addition chalcopyrite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!