A four-step formal allylation of benzoic acid derivatives involving a B(CF)-initiated and proton-catalyzed [1,2]-alkyl shift as part of a dehydrative coupling of cyclohexa-2,5-diene-1-carbaldehyde derivatives and 1,1-diarylalkenes is reported. By this, a series of allyl arenes can be regioselectively obtained from readily available benzoic acids in good yields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.3c00966DOI Listing

Publication Analysis

Top Keywords

dehydrative coupling
8
cyclohexa-25-diene-1-carbaldehyde derivatives
8
coupling 11-diarylalkenes
4
11-diarylalkenes cyclohexa-25-diene-1-carbaldehyde
4
derivatives induced
4
induced bcf-initiated
4
bcf-initiated [12]-alkyl
4
[12]-alkyl migration
4
migration four-step
4
four-step formal
4

Similar Publications

Surface-hydrogenated CrMnO coupled with GaN nanowires for light-driven bioethanol dehydration to ethylene.

Nat Commun

January 2025

Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

Light-driven bioethanol dehydration offers attractive outlooks for the sustainable production of ethylene. Herein, a surface-hydrogenated CrMnO is coupled with GaN nanowires (GaN@CMO-H) for light-driven ethanol dehydration to ethylene. Through combined experimental and computational investigations, a surface hydrogen-replenishment mechanism is proposed to disclose the ethanol dehydration pathway over GaN@CMO-H.

View Article and Find Full Text PDF

The objective of this study was to prepare a microcapsule system composed of the inner microenvironment (probiotics), middle oil layer (soybean oil and polyglycerol polyricinoleate) and outer coacervate (whey protein and gum arabic) using double emulsification technique coupled with complex coacervation to encapsulate probiotics, and to evaluate the effect of adding krill oil (KO) to the middle oil layer on microcapsule structure and probiotic stability. The results of Fourier transform infrared spectroscopy and Scanning electron microscopy confirmed that whey protein may capture phospholipids in KO through hydrogen bonds, resulting in the formation of a more compact coacervate. Due to the compact coacervate enhanced the vapor transport barrier and reduced water evaporation during low-temperature dehydration, probiotics encapsulated in KO-supplemented microcapsules revealed less cell damage and a higher survival rate after freeze-drying.

View Article and Find Full Text PDF

Controlling reaction outcomes through external influences is a central goal in chemistry. Vibrational coupling between molecular vibrations and cavity modes is rapidly emerging as a distinct strategy compared with conventional thermochemical and photochemical methods; however, insight into the fundamental mechanisms remains limited. Here we investigate how vibrational weak and strong coupling in plasmonic nanocavities modifies the thermal dehydration of copper sulfate pentahydrate.

View Article and Find Full Text PDF

Hyperspectral imaging for detection of macronutrients retained in glutinous rice under different drying conditions.

Curr Res Food Sci

December 2024

Empa Swiss Federal Laboratories for Material Science and Technology, ETH Zurich, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.

This study detected the macronutrients retained in glutinous rice (GR) under different drying conditions by innovatively applying visible-near infrared hyperspectral imaging coupled with different spectra preprocessing and effective wavelength selection techniques (EWs). Subsequently, predictive models were developed based on processed spectra for the detection of the macronutrients, which include protein content (PC), moisture content (MC), fat content (FC), and ash content (AC). The result shows the raw spectra-based model had a prediction accuracy ( ) of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!