Enhanced Production of Poly-γ-glutamic Acid by Bacillus subtilis Using Stage-controlled Fermentation and Viscosity Reduction Strategy.

Appl Biochem Biotechnol

Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, School of Intelligent Medicine and Biotechnology, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, Guangxi, China.

Published: March 2024

In this study, the production of poly-γ-glutamic acid (PGA) by Bacillus subtilis using stage-controlled fermentation and viscosity reduction strategy was investigated in detail. Based on the single-factor optimization experiment, temperature (42 °C and 37 °C), pH (7.0 and uncontrolled), aeration rate (1.2 vvm and 1.0 vvm), and agitation speed (700 rpm and 500 rpm) were selected for the two-stage controlled fermentation (TSCF). The time points for the TSCF of temperature, pH, aeration rate, and agitation speed were set at 18.52 h, 2.82 h, 5.92 h, and 3.62 h, respectively, based on the kinetic analysis. A PGA titer of 19.79 ~ 22.17 g/L was obtained from the TSCF, which did not increase significantly than that (21.25 ± 1.26 g/L) of non-stage controlled fermentation (NSCF). This may be due to the high viscosity and low dissolved oxygen of the PGA fermentation broth. Thus, the TSCF combined with a viscosity reduction strategy was developed to further improve the production of PGA. The PGA titer reached 25.00 ~ 30.67 g/L, which increased by 17.66 ~ 32.94% to that of NSCF. This study provided a valuable reference for the development of process control strategies for high-viscosity fermentation systems.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-023-04644-1DOI Listing

Publication Analysis

Top Keywords

viscosity reduction
12
reduction strategy
12
production poly-γ-glutamic
8
poly-γ-glutamic acid
8
bacillus subtilis
8
subtilis stage-controlled
8
stage-controlled fermentation
8
fermentation viscosity
8
aeration rate
8
agitation speed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!