An up-conversion BaIn(PO):Er/Yb phosphor that enables multi-mode temperature measurements and wide-gamut 'temperature mapping'.

Dalton Trans

College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China.

Published: July 2023

At present, most fluorescent materials that can be used for optical temperature measurement exhibit poor thermochromic performance, which limits their applications. In this study, the phosphor BaIn(PO):Er/Yb was synthesized with a high doping concentration of Yb, and it emitted composition- and temperature-induced wide color gamut up-conversion luminescence from red to green. Four modes of fluorescence thermometry can be realized in the temperature range of 303-603 K, which is based on the ratio of fluorescence intensity between thermally coupled energy levels and non-thermally coupled energy levels, color coordinate shift, and fluorescence decay lifetime, respectively. The highest Sr value obtained was 0.977% K. Taking advantage of the fact that temperature can significantly change the luminous color of the phosphor BaIn(PO):0.02Er/0.05Yb, we demonstrated 'temperature mapping' on a smooth metal surface with multiple optical encryptions. These results indicate that the BaIn(PO):Er/Yb phosphor is an excellent fluorescent material for thermal imaging and has great application potential in temperature visualization measurement and optical encryption.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3dt01575kDOI Listing

Publication Analysis

Top Keywords

bainpoer/yb phosphor
8
'temperature mapping'
8
coupled energy
8
energy levels
8
temperature
5
up-conversion bainpoer/yb
4
phosphor
4
phosphor enables
4
enables multi-mode
4
multi-mode temperature
4

Similar Publications

This paper is devoted to the investigation of the plasmonic effect of metal nanoparticles (NPs) formed on the surface of the YAG: Bi, Ce, Yb phosphors in a temperature range between 4 and 300 K. Combination of a thin conversion layer with silver plasmonic nanostructures leads to increase of sensitizer absorption and emission efficiency. Enhancement of Bi luminescence in YAG epitaxial films with Ag NPs was observed upon cooling the samples below 200 K.

View Article and Find Full Text PDF

Thermal Enhanced Near-Infrared Upconversion Luminescence in YMoO:Yb/Nd with Uniaxial Negative Thermal Expansion.

Inorg Chem

January 2025

School of Chemistry and Chemical Engineering/Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, P. R. China.

Thermal quenching (TQ) of luminescence presents a significant barrier to the effective use of optical thermometers in high-temperature applications. Herein, we report a novel uniaxial negative thermal expansion (NTE) phosphor, YMoO:Yb,Nd, synthesized by a solid-state reaction. Under 980 nm laser excitation, it exhibits excellent thermally enhanced near-infrared (NIR) upconversion luminescence (UCL) performance.

View Article and Find Full Text PDF

Engineering dual-mode near-infrared ratiometric thermometers based on rare earth-doped molybdates.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China. Electronic address:

Near-infrared optical thermometers have sparked great interest for their ability to provide non-destructive testing and high-resolution. However, the restricted relative sensitivity and single temperature measurement mode represent the current limitations of luminescent thermometers. Herein, near-infrared dual-mode ratiometric thermometers with high sensitivity in La(MoO): Yb, Ln (LMO: YbLn, Ln = Er, Ho, Nd) phosphors were designed.

View Article and Find Full Text PDF

Recent advancements in materials design have driven the scientific community to explore phosphor materials for multifunctional applications. This study presents the multimodal light emission (downshifting - DS, quantum cutting - QC, and upconversion - UC) from Pr/Yb activated NaLa(MoO) phosphors for multifunctional applications. Under blue (449 nm) and NIR (980 nm) excitation, co-doped phosphors emit visible light through DS and UC processes caused by different f-f transitions of Pr ions.

View Article and Find Full Text PDF

A series of Nd/Yb co-doped CaLaTaO (CLTO) phosphors are synthesized by a high temperature solid phase method. Structural characterization confirms the successful incorporation of Nd and Yb ions into the CLTO host lattice. The photoluminescence excitation (PLE) spectra and photoluminescence (PL) spectra of CLTO:Nd and CLTO:Nd/Yb are investigated in detail.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!