Antimicrobial peptides (AMPs) are a promising alternative to antibiotics to combat drug resistance in pathogenic bacteria. However, the development of AMPs with high potency and specificity remains a challenge, and new tools to evaluate antimicrobial activity are needed to accelerate the discovery process. Therefore, we proposed MBC-Attention, a combination of a multi-branch convolution neural network architecture and attention mechanisms to predict the experimental minimum inhibitory concentration of peptides against . The optimal MBC-Attention model achieved an average Pearson correlation coefficient (PCC) of 0.775 and a root mean squared error (RMSE) of 0.533 (log μM) in three independent tests of randomly drawn sequences from the data set. This results in a 5-12% improvement in PCC and a 6-13% improvement in RMSE compared to 17 traditional machine learning models and 2 optimally tuned models using random forest and support vector machine. Ablation studies confirmed that the two proposed attention mechanisms, global attention and local attention, contributed largely to performance improvement. IMPORTANCE Antimicrobial peptides (AMPs) are potential candidates for replacing conventional antibiotics to combat drug resistance in pathogenic bacteria. Therefore, it is necessary to evaluate the antimicrobial activity of AMPs quantitatively. However, wet-lab experiments are labor-intensive and time-consuming. To accelerate the evaluation process, we develop a deep learning method called MBC-Attention to regress the experimental minimum inhibitory concentration of AMPs against . The proposed model outperforms traditional machine learning methods. Data, scripts to reproduce experiments, and the final production models are available on GitHub.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10506472 | PMC |
http://dx.doi.org/10.1128/msystems.00345-23 | DOI Listing |
PLoS One
December 2024
Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran.
Objectives: Escherichia coli and Salmonella Typhimurium are frequent causes of foodborne illness affecting many people annually. In order to develop natural antimicrobial agents against these microorganisms, thyme oil (TO) was considered as active antibacterial ingredient. TO contains various bioactive compounds that exhibit antimicrobial properties.
View Article and Find Full Text PDFEur J Clin Microbiol Infect Dis
December 2024
Infection and Inflammation, Department of Biotechnology, School of Integrative Biology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610 005, India.
Purpose: Acinetobacter baumannii (A. baumannii) is an emerging global public health threat owing to its ability to form biofilms. Here, we evaluated 3-hydroxybenzoic acid (3-HBA), a promising organic compound, for its ability to disrupt biofilm formation and virulence attributes in clinical isolates of A.
View Article and Find Full Text PDFSci Rep
December 2024
Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, 11451, Riyadh, Saudi Arabia.
One of the biggest challenges encountered by the current generation is the evolution of antibiotic resistant bacteria as a result of excessive and inappropriate use of antibiotics. This problem has led to the development of alternative approaches to treat the diseases caused by these multidrug resistant bacteria (MDR). One of the most promising and novel approaches to combat these pathogens is utilization of nanomaterials as antimicrobial agents.
View Article and Find Full Text PDFSci Rep
December 2024
OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, West Bengal, 734013, India.
Cadmium, a toxic heavy metal, poses significant global concern. A strain of the genus Pseudomonas, CD3, demonstrating significant cadmium resistance (up to 3 mM CdCl.HO) was identified from a pool of 26 cadmium-resistant bacteria isolated from cadmium-contaminated soil samples from Malda, India.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
December 2024
Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, 2200, Denmark.
The evolution of antimicrobial resistance (AMR) in biofilms, driven by mechanisms like oxidative stress, is a major challenge. This study investigates whether antioxidants (AOs) such as N-acetyl-cysteine (NAC) and Edaravone (ED) can reduce AMR in Pseudomonas aeruginosa biofilms exposed to sub-inhibitory concentrations of ciprofloxacin (CIP). In vitro experimental evolution studies were conducted using flow cells and glass beads biofilm models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!