Impact of Electrostatic Interaction on Non-radiative Recombination Energy Losses in Organic Solar Cells Based on Asymmetric Acceptors.

Angew Chem Int Ed Engl

National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.

Published: August 2023

Reducing non-radiative recombination energy loss (ΔE ) is one key to boosting the efficiency of organic solar cells. Although the recent studies have indicated that the Y-series asymmetric acceptors-based devices featured relatively low ΔE , the understanding of the energy loss mechanism derived from molecular structure change is still lagging behind. Herein, two asymmetric acceptors named BTP-Cl and BTP-2Cl with different terminals were synthesized to make a clear comparative study with the symmetric acceptor BTP-0Cl. Our results suggest that asymmetric acceptors exhibit a larger difference of electrostatic potential (ESP) in terminals and semi-molecular dipole moment, which contributes to form a stronger π-π interaction. Besides, the experimental and theoretical studies reveal that a lower ESP-induced intermolecular interaction can reduce the distribution of PM6 near the interface to enhance the built-in potential and decrease the charge transfer state ratio for asymmetric acceptors. Therefore, the devices achieve a higher exciton dissociation efficiency and lower ΔE . This work establishes a structure-performance relationship and provides a new perspective to understand the state-of-the-art asymmetric acceptors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202304931DOI Listing

Publication Analysis

Top Keywords

asymmetric acceptors
20
non-radiative recombination
8
recombination energy
8
organic solar
8
solar cells
8
energy loss
8
asymmetric
6
acceptors
5
impact electrostatic
4
electrostatic interaction
4

Similar Publications

Tunneling Times in an Asymmetric Harmonic Double-Well with Application to Electron Transfers in Biological Macromolecules.

ACS Omega

December 2024

Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, 15054-000 São Paulo, Brazil.

Tunneling times were calculated in electron transfer processes using an asymmetric harmonic double-well model. The simplicity of a direct variational calculation in the approximate solution of the Schrödinger equation, along with the interpretation of tunneling times within the probabilistic framework of a two-level system, allows for the efficient and accurate determination of tunneling times with minimal computational cost. These calculations were applied to electron transfer processes in the study of the photosynthetic reaction center and in the context of catalysis in UV-induced DNA lesion repair and are in agreement with the experimental, computational, and theoretical results with which they were compared.

View Article and Find Full Text PDF

Crystal structure of -poly[[di-aqua-di-imida-zole-cobalt(II)]-μ-2,3,5,6-tetra-bromo-benzene-1,4-di-carboxyl-ato].

Acta Crystallogr E Crystallogr Commun

October 2024

Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan.

The asymmetric unit of the title compound, [Co(CBrO)(CHN)(HO)] or [Co(Brbdc)(im)(HO)] , comprises half of Co ion, tetra-bromo-benzene-dicarboxylate (Brbdc), imidazole (im) and a water mol-ecule. The Co ion exhibits a six-coordinated octa-hedral geometry with two oxygen atoms of the Brbdc ligand, two oxygen atoms of the water mol-ecules, and two nitro-gen atoms of the im ligands. The carboxyl-ate group is nearly perpendicular to the benzene ring and shows monodentate coordination to the Co ion.

View Article and Find Full Text PDF

Supramolecular chirality has gained immense attention for great potential, in which the rational engineering strategy facilitates unique helical stacking/assembly, high chiroptical behavior, and prime biomedical activity. In this study, we reported a novel chiral organic donor-acceptor cocrystal based on asymmetrical components of benzo()naphtho(1,2-)thiophene (BNT) and 9-oxo-9H-indeno(1,2-)pyrazine-2,3-dicarbonitrile (DCAF) that exhibited red emission using a simple solution approach. During the self-assembly, a kinetically controlled growth of polar solvent or substrate induction led to the chiral packing and helical morphology twisted by the cooperation of electrostatic potential energy and chirality.

View Article and Find Full Text PDF

Uranium is most stable when it is exposed to oxygen or water in its +6 oxidation state as the uranyl (UO) ion. This ion is subsequently particularly stable and very resistant to functionalization due to the inverse trans effect. Uranyl oxo ligands are typically not considered good hydrogen bond acceptors due to their weak Lewis basicity; however, the ligands bound in the equatorial plane greatly affect the strength of the oxo ligands' hydrogen bonding.

View Article and Find Full Text PDF

Donor-bridge-acceptor complexes (D-B-A) are important model systems for understanding of light-induced processes. Here, we apply two-color two-dimensional infrared (2D-IR) spectroscopy to D-B-A complexes with a -Pt(II) acetylide bridge (D-C≡C-Pt-C≡C-A) to uncover the mechanism of vibrational energy redistribution (IVR). Site-selective C isotopic labeling of the bridge is used to decouple the acetylide modes positioned on either side of the Pt-center.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!