Direct Amination of Benzene with Ammonia by Flow Plasma Chemistry.

Chemistry

Institut de Recherche de Chimie Paris, UMR 8247, 2PM group, Chimie ParisTech-PSL, PSL Université Paris, CNRS, 11 rue Pierre et Marie Curie, 75005, Paris, France.

Published: October 2023

Amine derivatives, including aniline and allylic amines, can be formed in a single-step process from benzene and an ammonia plasma in a microreactor. Different process parameters such as temperature, residence time, and plasma power were evaluated to improve the reaction yield and its selectivity toward aminated products and avoid hydrogenated or oligomerized products. In parallel, simulation studies of the process have been carried out to propose a global mechanism and gain a better understanding of the influence of the different process parameters. The exploration of diverse related alkenes showed that the double bonds, conjugation, and aromatization influenced the amination mechanism. Benzene was the best reactant for amination based on the lifetime of radical intermediates. Under optimized conditions, benzene was aminated in the absence of catalyst with a yield of 3.8 % and a selectivity of 49 % in various amino compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202301666DOI Listing

Publication Analysis

Top Keywords

benzene ammonia
8
process parameters
8
direct amination
4
benzene
4
amination benzene
4
ammonia flow
4
flow plasma
4
plasma chemistry
4
chemistry amine
4
amine derivatives
4

Similar Publications

Inkjet-Printed Graphene-PEDOT:PSS Decorated with Sparked ZnO Nanoparticles for Application in Acetone Detection at Room Temperature.

Polymers (Basel)

December 2024

Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, 2 Nanglinchi Road, Thungmahamek, Sathorn, Bangkok 10120, Thailand.

This work presents a simple process for the development of flexible acetone gas sensors based on zinc oxide/graphene/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate). The gas sensors were prepared by inkjet printing, which was followed by a metal sparking process involving different sparking times. The successful decoration of ZnO nanoparticles (average size ~19.

View Article and Find Full Text PDF

To explore the effects of the components in the raw materials and by-products of co-pyrolysis on the physicochemical properties of biochar, rice husk (RH, which has a high percentage of lignin and a low content of N) and sawdust (SD, which has a high percentage of both cellulose and N) were used as typical raw materials to prepare co-pyrolysis biochar. The benzene vapor adsorption performance of the obtained biochar was then tested on a fixed-bed device. At the same time, the by-product components generated during pyrolysis were analyzed using thermogravimetric (TG), scanning electron microscopy (SEM), and gas chromatography-mass spectrometry (GC-MS).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the catalytic fast pyrolysis of microalgae using Fe-modified HZSM-5 catalysts to produce aromatic hydrocarbons, analyzed through Py-GC/MS.
  • Various Fe loadings (3-12 wt%) and pyrolysis temperatures (450-600 °C) were tested, revealing that an 8 wt% Fe loading at 500 °C yielded the highest aromatic hydrocarbon content at 42.5%.
  • The modification with Fe improved the catalyst properties by increasing the total acid amount, enhancing the production of monocyclic aromatic hydrocarbons while reducing unwanted compounds like polycyclic aromatic hydrocarbons.
View Article and Find Full Text PDF

Chlorination of ammonia or chloramine-containing waters induces breakpoint chlorination reactions, producing a hydroxyl radical (•OH), but enhances the formation of undesirable -nitrosamines. The prevailing view attributes •OH formation to a nitrosyl intermediate derived from the hydrolysis of dichloramine, but this pathway is unlikely at neutral or acidic pH. This study reveals a novel mechanism where •OH is generated via interactions between trichloramine (NCl) and dichloramine (NHCl), which also form nitrosation agents.

View Article and Find Full Text PDF

An unprecedented five-component [2 + 2 + 1 + 1] benzannulation strategy for regioselective assembly of densely functionalized aromatic amines from two ynals, two malononitriles, and sodium sulfinates is established. The benzannulation protocol enables the efficient installation of five substituents on a benzene ring via the formation of multiple chemical bonds in a single operation, providing various multifunctionalized aromatic primary amines in moderate to good yields. Additionally, three-component [3 + 2 + 1] cycloaddition of malononitriles, ynals, and NHSCN was also achieved to produce 2-amnopyridine derivatives with NHSCN serving as an ammonia surrogate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!