On the basis of our previous comparative studies on the DNA binding of a pair of ruthenium(II) complex enantiomers, -[Ru(bpy)PBIP] and -[Ru(bpy)PBIP] {bpy = 2,2'-bipyridine, PBIP = 2-(4-bromophenyl)imidazo[4,5-]1,10-phenanthroline}, in this study, their antitumor activities and mechanisms were further investigated comparatively. The cytotoxicity assay demonstrated that both the enantiomers exerted selective antiproliferative effects on cancer cell lines A2780 and PC3. Fluorescence localization experiments suggested that both the enantiomers effectively permeated the nucleus of HeLa cells and co-localized with DNA, resulting in their DNA damage and apoptosis. Flow cytometry experiments showed that the apoptosis was enhanced by increasing the concentration of each enantiomer. Western blotting analyses indicated that both extrinsic and intrinsic apoptosis pathways were activated by the two enantiomers. miRNA microarray analyses displayed that both the enantiomers up- and downregulated multiple miRNAs, some of which were predicted to be associated with carcinogenesis. The above experimental results also showed that the -enantiomer exerted a more potent antitumor activity, a higher efficiency of entering cancer cells and a stronger apoptosis-inducing effect compared with the -enantiomer. Combined with the previously published research results, experimental results from this study implied that the antitumor activity of a metal complex might have originated from the conformation change of DNA in tumor cells caused by the intercalation of the complex, that the antitumor mechanism of a metal complex could be related to its DNA-binding mode, and that the antitumor efficiency of a metal complex could result from its DNA-binding strength.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3dt01584j | DOI Listing |
Langmuir
January 2025
Perm State University, 15 Bukirev strasse, Perm 614068, Russia.
Copper(II) oxide nanoparticles (CuO NPs) are used in different industries and agriculture, thus leading to their release to the environment, which raises concerns about their ecotoxicity and biosafety. The main toxicity mechanism of nanometals is oxidative stress as a result of the formation of reactive oxygen species caused by metal ions released from nanoparticles. Bacterial biofilms are more resistant to physical and chemical factors than are planktonic cells due to the extracellular polymeric matrix (EPM), which performs a protective function.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States.
We present the first approach to controlled metal chelation of peptide backbones, where the anchoring site is an aza-amino acid nitrogen and the directionality of chelation events is dictated by the acidity of neighboring NHs. Selective backbone chelation precludes the need for metal-binding side chains and/or free - or -termini in peptides. We show that the presence and location of an aza-amino acid impact complex formation and report the first X-ray crystal structures of azapeptides bound to palladium and nickel.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaymaniyah, Kurdistan Regional Government, 46002, Iraq.
This study highlights the importance of developing sensitive and selective sensors for use in pharmaceutical applications for the first time. A novel iron(III)-complex, constructed from unsymmetrical tetradentate NNN'O type Schiff base ligand (E)-3-((6-aminopyridin-2-yl)imino)-1-phenyl butane-1-one (LH) and its structure of it characterized by using various spectroscopic techniques such as FT-IR, UV-Vis, elemental analysis, conductivity, magnetic susceptibility measurements and the TGA method. The correlation of all results revealed that the coordination of the (LH) with the metal ion in a molar ratio of 1:1 leads to the formation of an octahedral geometry around the metal ions.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Basic Sciences, Sari University of Agricultural Sciences and Natural Resources, P.O.Box 578, Sari, Iran.
Among the various cations, the Fe ion is one of the most critical transition metal ions in living cells for many cellular functions and enzymatic activities. The decrease or overloading of Fe can lead to different disruptions in humans. Also, Fe, highly toxic, is very common in all industrial wastewater.
View Article and Find Full Text PDFDalton Trans
January 2025
Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
Phosphole and azaphosphole derivatives with triazole functionalities, [CH{1,2,3-NCCHC(PPh)}] (L1) and [CH{1,2,3-NC(Ph)C(PPh)}] (L2) were synthesized by reacting [(CH)(1,2,3-NC = CH--Br-CH)] and [(-Br-CH)(1,2,3-NC = CHCH)] with BuLi followed by the addition of dichlorophenylphosphine. The reactions of L1 and L2 with an excess of 30% HO afforded phosphole oxides [CH{1,2,3-NCCHC(P(O)Ph)}] (L1O) and [CH{1,2,3-NC(Ph)C(P(O)Ph)}] (L2O) as white crystalline solids. Stoichiometric reactions of L1 and L2 with [Ru(η--cymene)Cl] in CHCl yielded [RuCl(η--cymene)(L1-κ-)] (1) and [RuCl(η--cymene)(L2-κ-)] (2), respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!