Photodetectors that can operate over a wide range of temperatures, from cryogenic to elevated temperatures, are crucial for a variety of modern scientific fields, including aerospace, high-energy science, and astro-particle science. In this study, we investigate the temperature-dependent photodetection properties of titanium trisulfide (TiS)- in order to develop high-performance photodetectors that can operate across a wide range of temperatures (77 K-543 K). We fabricate a solid-state photodetector using the dielectrophoresis technique, which demonstrates a quick response (response/recovery time ~0.093 s) and high performance over a wide range of temperatures. Specifically, the photodetector exhibits a very high photocurrent (6.95 × 10 A), photoresponsivity (1.624 × 10 A/W), quantum efficiency (3.3 × 10 A/W·nm), and detectivity (4.328 × 10 Jones) for a 617 nm wavelength of light with a very weak intensity (~1.0 × 10 W/cm). The developed photodetector also shows a very high device ON/OFF ratio (~32). Prior to fabrication, the TiS nanoribbons were synthesized using the chemical vapor technique and characterized according to their morphology, structure, stability, and electronic and optoelectronic properties; this was performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and a UV-Visible-NIR spectrophotometer. We anticipate that this novel solid-state photodetector will have broad applications in modern optoelectronic devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221207PMC
http://dx.doi.org/10.3390/s23104948DOI Listing

Publication Analysis

Top Keywords

wide range
12
range temperatures
12
tis nanoribbons
8
photodetectors operate
8
operate wide
8
solid-state photodetector
8
electron microscopy
8
nanoribbons novel
4
novel material
4
material ultra-sensitive
4

Similar Publications

The controlled binding of proteins on nanoparticle surfaces remains a grand challenge required for many applications ranging from biomedical to energy storage. The difficulty in achieving this ability arises from the different functional groups of the biomolecule that can adsorb on the nanoparticle surface. While most proteins can only adopt a single structure, metamorphic proteins can access at least two different conformations, which presents intriguing opportunities to exploit such structural variations for binding to nanoparticles.

View Article and Find Full Text PDF

Background: Baculoviruses are ideal biological insecticides, providing long-lasting pest control and environmental benefits. Alphabaculovirus mabrassicae stains, with their broad host range, have been effective in agricultural pest management. Various A.

View Article and Find Full Text PDF

Technology-critical elements (TCEs) refer to the elements that play an important role in many emerging technologies and the production of advanced materials, and these include lanthanides, tungsten and vanadium. Actinides, Tl, and Pb, which also belong to TCEs, are abundantly used in power generation, industrial applications, and modern agricultural practices. The information on the influence of these elements on the aquatic environment and biota is still rather scarce.

View Article and Find Full Text PDF

Lactams Exhibit Potent Antifungal Activity Against Monospecies and Multispecies Interkingdom Biofilms on a Novel Hydrogel Skin Model.

APMIS

January 2025

Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, UK.

Infections of intact and damaged skin barriers and keratin are frequently associated with complex biofilm communities containing bacteria and fungi, yet there are limited options for successful management. This study intended to focus on the utility of some novel proprietary lactam molecules, quorum sensing (QS)-derived halogenated furanones, which act to block the QS pathway, against key fungal pathogens of the skin (Candida albicans, Malassezia furfur and Microsporum gypseum). Moreover, we aimed to assess how these actives performed against complex interkingdom biofilms in a clinically relevant model.

View Article and Find Full Text PDF

A Three-Component Reaction of Alkenyl Thianthrenium Salts, Cyclopropanols and Sulfur Dioxide.

J Org Chem

January 2025

School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 318000, China.

A three-component reaction of alkenyl thianthrenium salts, cyclopropan-1-ols and DABCO·(SO) under catalyst- and additive-free conditions, is accomplished. This sulfonylation with the insertion of sulfur dioxide works efficiently under very mild conditions, leading to a wide range of 1-substituted vinyl sulfones in moderate to good yields. In this protocol, the scope generality of alkenyl thianthrenium salts and cyclopropyl alcohols is demonstrated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!