In-Lab Demonstration of an Underwater Acoustic Spiral Source.

Sensors (Basel)

Laboratory for Robotics and Engineering Systems, University of Algarve, 8005-139 Faro, Portugal.

Published: May 2023

Underwater acoustic spiral sources can generate spiral acoustic fields where the phase depends on the bearing angle. This allows estimating the bearing angle of a single hydrophone relative to a single source and implementing localization equipment, e.g., for target detection or unmanned underwater vehicle navigation, without requiring an array of hydrophones and/or projectors. A spiral acoustic source prototype made out of a single standard piezoceramic cylinder, which is able to generate both spiral and circular fields, is presented. This paper reports the prototyping process and the multi-frequency acoustic tests performed in a water tank where the spiral source was characterized in terms of the transmitting voltage response, phase, and horizontal and vertical directivity patterns. A receiving calibration method for the spiral source is proposed and showed a maximum angle error of 3° when the calibration and the operation were carried out in the same conditions and a mean angle error of up to 6° for frequencies above 25 kHz when the same conditions were not fulfilled.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221259PMC
http://dx.doi.org/10.3390/s23104931DOI Listing

Publication Analysis

Top Keywords

spiral source
12
underwater acoustic
8
acoustic spiral
8
generate spiral
8
spiral acoustic
8
bearing angle
8
angle error
8
spiral
7
acoustic
5
source
5

Similar Publications

Large-scale quantum photonic circuits require integrating multiple single-photon sources, which are typically based on spontaneous four-wave mixing (SFWM) in spiral waveguides or microring resonators (MRRs). Photons can be generated in both clockwise (CW) and counterclockwise (CCW) orientations from a single source in a Sagnac configuration, showing promise for improving scalability. In this work, we propose a fully integrable scheme for bidirectional creation and usage of single photons.

View Article and Find Full Text PDF

Type-II multiferroicity from non-collinear spin order is recently explored in the van der Waals material NiI. Despite the importance for improper ferroelectricity, the microscopic mechanism of the helimagnetic order remains poorly understood. Here, the magneto-structural phases of NiI are investigated using resonant magnetic X-ray scattering (RXS) and X-ray diffraction.

View Article and Find Full Text PDF

Comparative Evaluation of Obturation Quality Using Three Different Obturation Techniques in Primary Teeth: A Conebeam Computed Tomography Analysis: Study.

Int J Clin Pediatr Dent

November 2024

Department of Pedodontics and Preventive Dentistry, Haldia Institute of Dental Sciences and Research, West Bengal University of Health Sciences, Kolkata, West Bengal, India.

Context: Pulpectomy is recommended for primary teeth when both the coronal and radicular pulp tissues are irreversibly damaged. Biomechanical preparation of root canals is essential for the success of endodontic treatment. Achieving the optimal length during obturation while minimizing voids and ensuring a hermetic seal is crucial for the success of pulpectomy procedures.

View Article and Find Full Text PDF

The spiral generator, based on the principle of the electric field vector inversion, is capable of delivering repetitive high-voltage nanosecond pulses in the commercial portable pulsed x-ray source and gas switch trigger source. However, the spiral generator suffers from extremely low output efficiency, which significantly affects the compactness and accelerates the insulation film breakdown at electrode foil edges since the high charging voltage is required. A novel output efficiency improvement method for the spiral generator was proposed, implementing the permalloy film inside the passive layer to optimize internal voltage wave propagation processes during the pulser erection.

View Article and Find Full Text PDF

To investigate the promoting effect of extracellular vesicles derived from myocardial cells (CM-EVs) on the reprogramming of cardiac fibroblasts (CFs) into cardiomyocyte-like cells (iCMs) and their therapeutic effect on myocardial infarction (MI) in rats. Cell experiments: The differential adhesion method was used to obtain Sprague Dawley (SD) suckling rat CFs and cardiomyocytes (CMs), while the ultracentrifugation method was used to obtain CM-EVs. Transmission electron microscopy and nanoparticle tracking technology were used to analyze and determine the morphology and particle size of CM-EVs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!