A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Novel Approach for Efficient Solar Panel Fault Classification Using Coupled UDenseNet. | LitMetric

A Novel Approach for Efficient Solar Panel Fault Classification Using Coupled UDenseNet.

Sensors (Basel)

Department of Electronics Engineering, Kookmin University, Seoul 02707, Republic of Korea.

Published: May 2023

Photovoltaic (PV) systems have immense potential to generate clean energy, and their adoption has grown significantly in recent years. A PV fault is a condition of a PV module that is unable to produce optimal power due to environmental factors, such as shading, hot spots, cracks, and other defects. The occurrence of faults in PV systems can present safety risks, shorten system lifespans, and result in waste. Therefore, this paper discusses the importance of accurately classifying faults in PV systems to maintain optimal operating efficiency, thereby increasing the financial return. Previous studies in this area have largely relied on deep learning models, such as transfer learning, with high computational requirements, which are limited by their inability to handle complex image features and unbalanced datasets. The proposed lightweight coupled UdenseNet model shows significant improvements for PV fault classification compared to previous studies, achieving an accuracy of 99.39%, 96.65%, and 95.72% for 2-class, 11-class, and 12-class output, respectively, while also demonstrating greater efficiency in terms of parameter counts, which is particularly important for real-time analysis of large-scale solar farms. Furthermore, geometric transformation and generative adversarial networks (GAN) image augmentation techniques improved the model's performance on unbalanced datasets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222028PMC
http://dx.doi.org/10.3390/s23104918DOI Listing

Publication Analysis

Top Keywords

fault classification
8
coupled udensenet
8
faults systems
8
previous studies
8
unbalanced datasets
8
novel approach
4
approach efficient
4
efficient solar
4
solar panel
4
panel fault
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!