Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Compressed imaging reconstruction technology can reconstruct high-resolution images with a small number of observations by applying the theory of block compressed sensing to traditional optical imaging systems, and the reconstruction algorithm mainly determines its reconstruction accuracy. In this work, we design a reconstruction algorithm based on block compressed sensing with a conjugate gradient smoothed l0 norm termed BCS-CGSL0. The algorithm is divided into two parts. The first part, CGSL0, optimizes the SL0 algorithm by constructing a new inverse triangular fraction function to approximate the l0 norm and uses the modified conjugate gradient method to solve the optimization problem. The second part combines the BCS-SPL method under the framework of block compressed sensing to remove the block effect. Research shows that the algorithm can reduce the block effect while improving the accuracy and efficiency of reconstruction. Simulation results also verify that the BCS-CGSL0 algorithm has significant advantages in reconstruction accuracy and efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222555 | PMC |
http://dx.doi.org/10.3390/s23104870 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!