A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multi-Branch Attention Learning for Bone Age Assessment with Ambiguous Label. | LitMetric

Multi-Branch Attention Learning for Bone Age Assessment with Ambiguous Label.

Sensors (Basel)

School of Automation (School of Artificial Intelligence), Hangzhou Dianzi University, Hangzhou 310018, China.

Published: May 2023

Bone age assessment (BAA) is a typical clinical technique for diagnosing endocrine and metabolic diseases in children's development. Existing deep learning-based automatic BAA models are trained on the Radiological Society of North America dataset (RSNA) from Western populations. However, due to the difference in developmental process and BAA standards between Eastern and Western children, these models cannot be applied to bone age prediction in Eastern populations. To address this issue, this paper collects a bone age dataset based on the East Asian populations for model training. Nevertheless, it is laborious and difficult to obtain enough X-ray images with accurate labels. In this paper, we employ ambiguous labels from radiology reports and transform them into Gaussian distribution labels of different amplitudes. Furthermore, we propose multi-branch attention learning with ambiguous labels network (MAAL-Net). MAAL-Net consists of a hand object location module and an attention part extraction module to discover the informative regions of interest (ROIs) based only on image-level labels. Extensive experiments on both the RSNA dataset and the China Bone Age (CNBA) dataset demonstrate that our method achieves competitive results with the state-of-the-arts, and performs on par with experienced physicians in children's BAA tasks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221871PMC
http://dx.doi.org/10.3390/s23104834DOI Listing

Publication Analysis

Top Keywords

bone age
20
multi-branch attention
8
attention learning
8
age assessment
8
ambiguous labels
8
bone
5
age
5
labels
5
learning bone
4
assessment ambiguous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!