A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Image Generation and Recognition for Railway Surface Defect Detection. | LitMetric

Image Generation and Recognition for Railway Surface Defect Detection.

Sensors (Basel)

Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.

Published: May 2023

Railway defects can result in substantial economic and human losses. Among all defects, surface defects are the most common and prominent type, and various optical-based non-destructive testing (NDT) methods have been employed to detect them. In NDT, reliable and accurate interpretation of test data is vital for effective defect detection. Among the many sources of errors, human errors are the most unpredictable and frequent. Artificial intelligence (AI) has the potential to address this challenge; however, the lack of sufficient railway images with diverse types of defects is the major obstacle to training the AI models through supervised learning. To overcome this obstacle, this research proposes the RailGAN model, which enhances the basic CycleGAN model by introducing a pre-sampling stage for railway tracks. Two pre-sampling techniques are tested for the RailGAN model: image-filtration, and U-Net. By applying both techniques to 20 real-time railway images, it is demonstrated that U-Net produces more consistent results in image segmentation across all images and is less affected by the pixel intensity values of the railway track. Comparison of the RailGAN model with U-Net and the original CycleGAN model on real-time railway images reveals that the original CycleGAN model generates defects in the irrelevant background, while the RailGAN model produces synthetic defect patterns exclusively on the railway surface. The artificial images generated by the RailGAN model closely resemble real cracks on railway tracks and are suitable for training neural-network-based defect identification algorithms. The effectiveness of the RailGAN model can be evaluated by training a defect identification algorithm with the generated dataset and applying it to real defect images. The proposed RailGAN model has the potential to improve the accuracy of NDT for railway defects, which can ultimately lead to increased safety and reduced economic losses. The method is currently performed offline, but further study is planned to achieve real-time defect detection in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223381PMC
http://dx.doi.org/10.3390/s23104793DOI Listing

Publication Analysis

Top Keywords

railgan model
28
defect detection
12
railway images
12
cyclegan model
12
railway
10
model
10
railway surface
8
railway defects
8
railway tracks
8
real-time railway
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!