Connected and automated vehicles (CAVs) require multiple tasks in their seamless maneuverings. Some essential tasks that require simultaneous management and actions are motion planning, traffic prediction, traffic intersection management, etc. A few of them are complex in nature. Multi-agent reinforcement learning (MARL) can solve complex problems involving simultaneous controls. Recently, many researchers applied MARL in such applications. However, there is a lack of extensive surveys on the ongoing research to identify the current problems, proposed methods, and future research directions in MARL for CAVs. This paper provides a comprehensive survey on MARL for CAVs. A classification-based paper analysis is performed to identify the current developments and highlight the various existing research directions. Finally, the challenges in current works are discussed, and some potential areas are given for exploration to overcome those challenges. Future readers will benefit from this survey and can apply the ideas and findings in their research to solve complex problems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221654 | PMC |
http://dx.doi.org/10.3390/s23104710 | DOI Listing |
Tech Coloproctol
January 2025
Ellen Leifer Shulman and Steven Shulman Digestive Disease Center, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd, Weston, FL, USA.
Introduction: Chatbots have been increasingly used as a source of patient education. This study aimed to compare the answers of ChatGPT-4 and Google Gemini to common questions on benign anal conditions in terms of appropriateness, comprehensiveness, and language level.
Methods: Each chatbot was asked a set of 30 questions on hemorrhoidal disease, anal fissures, and anal fistulas.
Ital J Pediatr
January 2025
Polistudium SRL, Milan, Italy.
Background: The PalliPed project is a nationwide, observational, cross-sectional study designed with the aim of providing a constantly updated national database for the census and monitoring of specialized pediatric palliative care (PPC) activities in Italy. This paper presents the results of the first monitoring phase of the PalliPed project, which was developed through the PalliPed 2022-2023 study, to update current knowledge on the provision of specialized PPC services in Italy.
Methods: Italian specialized PPC centers/facilities were invited to participate and asked to complete a self-reporting, ad-hoc, online survey regarding their clinical activity in 2022-2023, in the revision of the data initially collected in the first PalliPed study of 2021.
BMC Musculoskelet Disord
January 2025
Department of Orthopedics, Peking University Third Hospital, No. 49. North Garden Street, Hai Dian District, Beijing, 100191, People's Republic of China.
Background: For degenerative lumbar scoliosis (DLS), prior studies mainly focused on the preoperative relationship between spinopelvic parameters and health-related quality of life (HRQoL), lacking an exhaustive evaluation of the postoperative situation. Therefore, the postoperative parameters most closely bonded with clinical outcomes has not yet been well-defined in DLS patients. The objective of this study was to comprehensively assess the correlation between radiographic parameters and HRQoL before and after surgery, and to identified the most valuable spinopelvic parameters for postoperative curative effect.
View Article and Find Full Text PDFBMC Nurs
January 2025
Nursing Department, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar.
Background: Artificial Intelligence (AI) is increasingly applied in healthcare to boost productivity, reduce administrative workloads, and improve patient outcomes. In nursing, AI offers both opportunities and challenges. This study explores nurses' perspectives on implementing AI in nursing practice within the context of Jordan, focusing on the perceived benefits and concerns related to its integration.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 622 West 168th Street, Ste. 876, New York, NY, 10032, USA.
The COVID-19 pandemic may have exacerbated mental health conditions by introducing and/or modifying stressors, particularly in university populations. We examined longitudinal patterns, time-varying predictors, and contemporaneous correlates of moderate-severe psychological distress (MS-PD) among college students. During 2020-2021, participants completed self-administered questionnaires quarterly (T1 = 562, T2 = 334, T3 = 221, and T4 = 169).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!