Polydopamine (PDA) is a multifunctional biomimetic material that is friendly to biological organisms and the environment, and surface-enhanced Raman scattering (SERS) sensors have the potential to be reused. Inspired by these two factors, this review summarizes examples of PDA-modified materials at the micron or nanoscale to provide suggestions for designing intelligent and sustainable SERS biosensors that can quickly and accurately monitor disease progression. Undoubtedly, PDA is a kind of double-sided adhesive, introducing various desired metals, Raman signal molecules, recognition components, and diverse sensing platforms to enhance the sensitivity, specificity, repeatability, and practicality of SERS sensors. Particularly, core-shell and chain-like structures could be constructed by PDA facilely, and then combined with microfluidic chips, microarrays, and lateral flow assays to provide excellent references. In addition, PDA membranes with special patterns, and hydrophobic and strong mechanical properties can be used as independent platforms to carry SERS substances. As an organic semiconductor material capable of facilitating charge transfer, PDA may possess the potential for chemical enhancement in SERS. In-depth research on the properties of PDA will be helpful for the development of multi-mode sensing and the integration of diagnosis and treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223239 | PMC |
http://dx.doi.org/10.3390/s23104641 | DOI Listing |
Int J Mol Sci
January 2025
College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
Nanozymes, a kind of nanoparticles with enzyme-mimicking activities, have attracted considerable attention due to their robust catalytic properties, ease of preparation, and resistance to harsh conditions. By combining nanozymes with surface-enhanced Raman spectroscopy (SERS) technology, highly sensitive and selective sensors have been developed. These sensors are capable of detecting a wide range of analytes, such as foodborne toxins, environmental pollutants, and biomedical markers.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova.
This article analyzes the prospects for the appearance of paper-based sensors on the sensor market. It is concluded that paper-based sensors are not a fantasy but a reality. It is shown that paper has properties that make it possible to develop a wide variety of paper-based sensors, such as SERS, colorimetric, fluorescent, conductometric, capacitive, fiber-optic, electrochemical, microfluidic, shape-deformation, microwave, and various physical sensors.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
High-sensitivity and repeatable detection of hydrophobic molecules through the surface-enhanced Raman scattering (SERS) technique is a tough challenge because of their weak adsorption and non-uniform distribution on SERS substrates. In this research, we present a simple self-assembly protocol for monolayer SERS mediated by 6-deoxy-6-thio-β-cyclodextrin (β-CD-SH). This protocol allows for the rapid assembly of a compact silver nanoparticle (Ag NP) monolayer at the oil/water interface within 40 s, while entrapping analyte molecules within hotspots.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico.
Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation of larger plastics through environmental degradation. These particles, typically less than 5 mm, are found globally, from deep seabeds to human tissues, and are known to adsorb and release harmful pollutants, exacerbating ecological and health risks.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
Nucleic acid aptamers are single-stranded oligonucleotides that are selected through exponential enrichment (SELEX) technology from synthetic DNA/RNA libraries. These aptamers can specifically recognize and bind to target molecules, serving as specific recognition elements. Surface-enhanced Raman scattering (SERS) spectroscopy is an ultra-sensitive, non-destructive analytical technique that can rapidly acquire the "fingerprint information" of the measured molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!