This study investigated the ability of electrically conductive carbon rovings to detect cracks in textile-reinforced concrete (TRC) structures. The key innovation lies in the integration of carbon rovings into the reinforcing textile, which not only contributes to the mechanical properties of the concrete structure but also eliminates the need for an additional sensory system, such as strain gauges, to monitor the structural health. Carbon rovings are integrated into a grid-like textile reinforcement that differs in binding type and dispersion concentration of the styrene butadiene rubber (SBR) coating. Ninety final samples were subjected to a four-point bending test in which the electrical changes of the carbon rovings were measured simultaneously to capture the strain. The mechanical results show that the SBR50-coated TRC samples with circular and elliptical cross-sectional shape achieved, with 1.55 kN, the highest bending tensile strength, which is also captured with a value of 0.65 Ω by the electrical impedance monitoring. The elongation and fracture of the rovings have a significant effect on the impedance mainly due to electrical resistance change. A correlation was found between the impedance change, binding type and coating. This suggests that the elongation and fracture mechanisms are affected by the number of outer and inner filaments, as well as the coating.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221181PMC
http://dx.doi.org/10.3390/s23104601DOI Listing

Publication Analysis

Top Keywords

carbon rovings
20
trc structures
8
cross-sectional shape
8
binding type
8
elongation fracture
8
carbon
5
rovings
5
rovings strain
4
strain sensor
4
sensor trc
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!