An appraisal of the principal concerns and controlling factors for Arsenic contamination in Chile.

Sci Rep

School of Engineering, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, Queensland, Australia.

Published: July 2023

Although geogenic Arsenic (As) contamination is well-recognized in northern Chile, it is not restricted to this part of the country, as the geological conditions favoring As release to the human environment exist across the country as well, although not at the same level, based on comparatively fewer studies in central and southern Chile. The present work provides a critical evaluation of As sources, pathways, and controls with reports and case studies from across the country based on an exhaustive bibliographic review of its reported geogenic sources and processes that affect its occurrence, systematization, and critical revision of this information. Arc magmatism and associated geothermal activities, identified as the primary As sources, are present across the Chilean Andes, except for the Pampean Flat Slab and Patagonian Volcanic Gap. Metal sulfide ore zones, extending from the country's far north to the south-central part, are the second most important geogenic As source. While natural leaching of As-rich mineral deposits contaminates the water in contact, associated mining, and metallurgical activities result in additional As release into the human environment through mining waste and tailings. Moreover, crustal thickness has been suggested as a principal controlling factor for As release, whose southward decrease has been correlated with lower As values.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333292PMC
http://dx.doi.org/10.1038/s41598-023-38437-7DOI Listing

Publication Analysis

Top Keywords

arsenic contamination
8
release human
8
human environment
8
appraisal principal
4
principal concerns
4
concerns controlling
4
controlling factors
4
factors arsenic
4
contamination chile
4
chile geogenic
4

Similar Publications

Field-scale screening of pumpkin cultivars for cost-effectiveness of "repairing while producing" in cadmium-arsenic co-contaminated agricultural land.

Food Chem X

January 2025

Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China.

Soil contamination with heavy metals poses a significant health risk as these metals can be transferred to humans through agricultural products. This study aimed to identify pumpkin varieties with low cadmium and arsenic accumulation. To this end, we evaluated 25 pumpkin varieties.

View Article and Find Full Text PDF

Soil polluted system shapes endophytic fungi communities associated with : a field experiment.

PeerJ

January 2025

Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China.

With the expansion of the mining industry, environmental pollution from microelements (MP) and red mud (RM) has become a pressing issue. While bioremediation offers a cost-effective and sustainable solution, plant growth in these polluted environments remains difficult. is one of the few plants capable of surviving in RM-affected soils.

View Article and Find Full Text PDF

This study aims to utilize secondary aluminum dross waste to synthesize Fe-Al layered double hydroxide (Fe-Al LDH) for efficient adsorption of arsenic from drinking water. The synthesis process was based on a multi-step hydrometallurgical approach, in which the aluminum content in the waste was first converted to sodium aluminate. This was followed by the transformation into Fe-Al LDH through a series of processes, including gelation, sol formation, simultaneous precipitation, and aging.

View Article and Find Full Text PDF

This study investigated the effects of fine-sized pork bone biochar particles on remediating As-contaminated soil and alleviating associated phytotoxicity to rice in 50-day short-term and 120-day full-life-cycle pot experiments. The addition of micro-nanostructured pork bone biochar (BC) pyrolyzed at 400 and 600 °C (BC400 and BC600) significantly increased the As-treated shoot and root fresh weight by 24.4-77.

View Article and Find Full Text PDF

Arsenic toxicity in Antarctic krill oil and its impact on human intestinal cells.

Ecotoxicol Environ Saf

January 2025

East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China. Electronic address:

Arsenic is a pervasive environmental pollutant that can bioaccumulate in Antarctic krill through the food chain, posing potential risks to human health. This study investigates the toxic effects of arsenic in Antarctic krill oil (AKO) on Caco-2 cells, focusing on oxidative stress and apoptosis induction. AKO is nutrient-rich and contains various arsenic species, including arsenite (As³⁺), arsenate (As⁵⁺), dimethyl arsinic acid (DMA), and arsenobetaine (AsB), each exhibiting different toxic potencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!