Disordered sleep is a global social problem and an established significant risk factor for psychological and metabolic diseases. We profiled non-targeted metabolites in saliva from mouse models of chronic sleep disorder (CSD). We identified 288 and 55 metabolites using CE-FTMS and LC-TOFMS, respectively, among which concentrations of 58 (CE-FTMS) and three (LC-TOFMS) were significantly changed by CSD. Pathway analysis revealed that CSD significantly suppressed glycine, serine and threonine metabolism. Arginine and proline metabolic pathways were among those that were both upregulated and downregulated. Pathways of alanine, aspartate and glutamate metabolism, genetic information processing, and the TCA cycle tended to be downregulated, whereas histidine metabolism tended to be upregulated in mice with CSD. Pyruvate, lactate, malate, succinate and the glycemic amino acids alanine, glycine, methionine, proline, and threonine were significantly decreased, whereas 3-hydroxybutyric and 2-hydroxybutyric acids associated with ketosis were significantly increased, suggesting abnormal glucose metabolism in mice with CSD. Increases in the metabolites histamine and kynurenic acid that are associated with the central nervous system- and decreased glycine, might be associated with sleep dysregulation and impaired cognitive dysfunction in mice with CSD. Our findings suggested that profiling salivary metabolites could be a useful strategy for diagnosing CSD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333369PMC
http://dx.doi.org/10.1038/s41598-023-38289-1DOI Listing

Publication Analysis

Top Keywords

mice csd
12
mouse models
8
models chronic
8
chronic sleep
8
csd
7
metabolic profiles
4
profiles saliva
4
saliva male
4
male mouse
4
sleep
4

Similar Publications

The role of cells of the hematopoietic lineage in fibrosis is controversial. Here we evaluate the contribution of Col I+/CD45+ cells (fibrocytes) to lung fibrosis. Systemic bleomycin treatment was used to induce fibrosis in a bone marrow transplant and two transgenic mouse models.

View Article and Find Full Text PDF

Progesterone receptors regulate susceptibility to spreading depression.

Exp Neurol

January 2025

Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA; UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA.

Migraine patients often experience sensory symptoms called auras accompanying the headaches. Cortical spreading depression (CSD), a slow-propagating wave of neuroglial depolarization followed by hyperpolarization is proposed to be the neurological mechanism underlying these auras. We have previously found that progesterone regulates susceptibility to migraine through progesterone receptor (PR) activation.

View Article and Find Full Text PDF

Chronic Sleep Deprivation Causes Anxiety, Depression and Impaired Gut Barrier in Female Mice-Correlation Analysis from Fecal Microbiome and Metabolome.

Biomedicines

November 2024

Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.

Background: Chronic sleep deprivation (CSD) plays an important role in mood disorders. However, the changes in the gut microbiota and metabolites associated with CSD-induced anxiety/depression-like behavior in female mice have not been determined. Due to the influence of endogenous hormone levels, females are more susceptible than males to negative emotions caused by sleep deprivation.

View Article and Find Full Text PDF

Sleep loss becomes a major problem in modern life and increases the incidence of anxiety disorders. Benzodiazepines are the most commonly used anxiolytic medications. Remimazolam is an ultra-short-acting benzodiazepine, which has been shown to reduce the preoperative anxiety levels in patients.

View Article and Find Full Text PDF

Senescence and osteogenic differentiation potential loss limited bone nonunion treatment effects of bone marrow-derived mesenchymal stem cells (BMSCs). MiR-100-5p/Lysine(K)-specific demethylase 6B (KDM6B) can inhibit osteogenesis, but their effects on bone union remain unclear. This study aims to investigate the effects of miR-100-5p/KDM6B on osteogenic differentiation and bone defects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!