A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

ORCA-SPY enables killer whale sound source simulation, detection, classification and localization using an integrated deep learning-based segmentation. | LitMetric

Acoustic identification of vocalizing individuals opens up new and deeper insights into animal communications, such as individual-/group-specific dialects, turn-taking events, and dialogs. However, establishing an association between an individual animal and its emitted signal is usually non-trivial, especially for animals underwater. Consequently, a collection of marine species-, array-, and position-specific ground truth localization data is extremely challenging, which strongly limits possibilities to evaluate localization methods beforehand or at all. This study presents ORCA-SPY, a fully-automated sound source simulation, classification and localization framework for passive killer whale (Orcinus orca) acoustic monitoring that is embedded into PAMGuard, a widely used bioacoustic software toolkit. ORCA-SPY enables array- and position-specific multichannel audio stream generation to simulate real-world ground truth killer whale localization data and provides a hybrid sound source identification approach integrating ANIMAL-SPOT, a state-of-the-art deep learning-based orca detection network, followed by downstream Time-Difference-Of-Arrival localization. ORCA-SPY was evaluated on simulated multichannel underwater audio streams including various killer whale vocalization events within a large-scale experimental setup benefiting from previous real-world fieldwork experience. Across all 58,320 embedded vocalizing killer whale events, subject to various hydrophone array geometries, call types, distances, and noise conditions responsible for a signal-to-noise ratio varying from [Formula: see text] dB to 3 dB, a detection rate of 94.0 % was achieved with an average localization error of 7.01[Formula: see text]. ORCA-SPY was field-tested on Lake Stechlin in Brandenburg Germany under laboratory conditions with a focus on localization. During the field test, 3889 localization events were observed with an average error of 29.19[Formula: see text] and a median error of 17.54[Formula: see text]. ORCA-SPY was deployed successfully during the DeepAL fieldwork 2022 expedition (DLFW22) in Northern British Columbia, with a mean average error of 20.01[Formula: see text] and a median error of 11.01[Formula: see text] across 503 localization events. ORCA-SPY is an open-source and publicly available software framework, which can be adapted to various recording conditions as well as animal species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333356PMC
http://dx.doi.org/10.1038/s41598-023-38132-7DOI Listing

Publication Analysis

Top Keywords

killer whale
20
sound source
12
localization
10
orca-spy enables
8
source simulation
8
classification localization
8
deep learning-based
8
array- position-specific
8
ground truth
8
localization data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!