The current study describes a straightforward, biologically and environmentally friendly method for creating magnetic iron oxide (γ-FeO) nanoparticles. We report here that the Bacillus subtilis SE05 strain, isolated from offshore formation water near Zaafarana, the Red Sea, Hurghada, Egypt, can produce highly magnetic iron oxide nanoparticles of the maghemite type (γ-FeO). To the best of our knowledge, the ability of this bacterium to reduce FeO has yet to be demonstrated. As a result, this study reports on the fabrication of enzyme-NPs and the biological immobilization of α-amylase on a solid support. The identified strain was deposited in GenBank with accession number MT422787. The bacterial cells used for the synthesis of magnetic nanoparticles produced about 15.2 g of dry weight, which is considered a high quantity compared to the previous studies. The XRD pattern revealed the crystalline cubic spinel structure of γ-FeO. TEM micrographs showed the spherically shaped IONPs had an average size of 7.68 nm. Further, the importance of protein-SPION interaction and the successful synthesis of stabilized SPIONs in the amylase enzyme hybrid system are also mentioned. The system showed the applicability of these nanomaterials in biofuel production, which demonstrated significant production (54%) compared to the free amylase enzyme (22%). Thus, it is predicted that these nanoparticles can be used in energy fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333189 | PMC |
http://dx.doi.org/10.1038/s41598-023-37826-2 | DOI Listing |
Mikrochim Acta
January 2025
Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
A novel Ru-FeO nanozyme with enhanced peroxidase-like (POD-like) activity was synthesized through a hydrothermal method. Ru-FeO nanozyme was effectively utilized for the detection of thiophanate-methyl (TM) using a colorimetric technique. The POD-like activity of Ru-FeO was found to be superior compared to FeO, Rh-FeO, and Pd-FeO.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo. C/ Julián Clavería 8, 33006, Oviedo, Spain; Health Research Institute of Asturias (ISPA), Avda de Roma s/n, 33011, Oviedo, Spain. Electronic address:
Background: 3D cellular structures have been considered the following step in the evaluation of drugs penetration after 2D cultures since they are more physiologically representative in cancer cell biology. Here the penetration capabilities of Pt (IV)-loaded ultrasmall iron oxide nanoparticles in 143B osteosarcoma multicellular spheroids of different sizes is conducted by a multidimensional quantitative approach. Single cell (SC) and imaging techniques (laser ablation, LA) coupled to inductively coupled plasma-mass spectrometry (ICP-MS) are used to visualize their penetration pathways and distribution in comparison to those of cisplatin.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
January 2025
Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
Iron-based nanomaterials (IBNMs) have been widely applied in biomedicine applications including magnetic resonance imaging, targeted drug delivery, tumor therapy, and so forth, due to their unique magnetism, excellent biocompatibility, and diverse modalities. Further research on its enormous biomedical potential is still ongoing, and its new features are constantly being tapped and demonstrated. Among them, various types of IBNMs have demonstrated significant cancer therapy capabilities by regulating the tumor microenvironment (TME).
View Article and Find Full Text PDFPlacenta
January 2025
Department of Radiology, Baylor College of Medicine, Houston, TX, 77030, USA; The Singleton Department of Radiology, Texas Children's Hospital, Houston, TX, 77030, USA. Electronic address:
Introduction: Placenta accreta spectrum (PAS) occurs when the placenta is pathologically adherent to the myometrium. An intact retroplacental clear space (RPCS) is a marker of normal placentation. In this study, we investigate use of the FDA-approved iron supplement ferumoxytol for contrast-enhanced MRI of the RPCS in mouse models of normal pregnancy and PAS.
View Article and Find Full Text PDFBackground: Enriching and detecting Alzheimer's disease (AD) biomarkers in cerebral spinal fluid (CSF) or blood samples are increasingly applied in the AD diagnosis and monitoring of disease progression and treatment response. The accuracy of these processes is dependent on the sensitivity and specificity of capturing and quantifying AD biomarkers, e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!