Inorganic sulfide solid-state electrolytes, especially LiPSX (X = Cl, Br, I), are considered viable materials for developing all-solid-state batteries because of their high ionic conductivity and low cost. However, this class of solid-state electrolytes suffers from structural and chemical instability in humid air environments and a lack of compatibility with layered oxide positive electrode active materials. To circumvent these issues, here, we propose LiMAsSI (M=Si, Sn) as sulfide solid electrolytes. When the LiSiAsSI (x = 0.8) is tested in combination with a Li-In negative electrode and TiS-based positive electrode at 30 °C and 30 MPa, the Li-ion lab-scale Swagelok cells demonstrate long cycle life of almost 62500 cycles at 2.44 mA cm, decent power performance (up to 24.45 mA cm) and areal capacity of 9.26 mAh cm at 0.53 mA cm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333182 | PMC |
http://dx.doi.org/10.1038/s41467-023-39686-w | DOI Listing |
Molecules
January 2025
Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China.
The main component of high-capacity silicon-based electrodes is silicon powder, which necessitates intricate processing to minimize volume growth and powder separation while guaranteeing the ideal Si content. This work uses the an situ high-pressure forming approach to create an MXene/-Si/MXene composite electrode, where MXene refers to TiCT, and -Si denotes two-phase mixed nano-Si particles. The sandwich shape promotes silicon's volume growth and stops active particles from spreading.
View Article and Find Full Text PDFBioorg Chem
February 2025
N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Avenue 9, Novosibirsk 630090, Russia. Electronic address:
Eudesmane-type sesquiterpene lactone isoalantolactone 1 is of great interest due to its availability, biological activity and synthetic application. Respective series of original spirocyclic (11S,5') (1,2,3-triazoline-eudesma-4,15-enolides) and (11S)-aziridine-eudesma-4,15-enolides were efficiently synthesized via a chemoselective 1,3-dipolar cycloaddition reaction of organic azides to the exocyclic double bond of the lactone ring of isoalantolactone or 13E-(aryl)isoalantolactones by heating in DMF or toluene. The thermal reactions of isoalantolactone with benzyl azide, 2-azidoethanol, or n-butyl azide in 2-methoxyethanol afforded 13-(alkyamino)isoalantolactones formed as a mixture of (Z) and (E)-isomers.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Fluoro & Agro Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India.
This report explores the potential of novel 6-aryloxy-2-aminopyrimidine-benzonitrile scaffolds as promising anti-infective agents in the face of the increasing threat of infectious diseases. Starting from 2-amino-4,6-dichloropyrimidine, a series of 24 compounds inspired from the antiviral drugs dapivirine, etravirine, and rilpivirine were designed and synthesized via a two-step reaction sequence in good yields. Biological testing of synthetic analogs revealed potent inhibition against both viral and tuberculosis targets.
View Article and Find Full Text PDFChem Biodivers
December 2024
State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.
A series of Matijin-Su (MTS) derivatives were designed, synthesized and their anti-hepatitis B virus (HBV) activities were evaluated in vitro. Twelve compounds displayed good inhibitory activity against HBV DNA replication with IC values at micromolar level (0.14-4.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2024
Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama 223-8522, Japan.
The design of materials with intriguing electronic properties is crucial for advancing nanoscale technologies, where precise control over atomic structure and electronic behavior is essential. Metal-encapsulating silicon cage superatoms (SAs) provide a new paradigm for molecular-scale material design, allowing fine-tuning of both structure and electronic characteristics. The formation of superatoms mimicking halogens, noble gases, and alkali metals has been well-studied, particularly with M@Si, where early transition metals from groups 3 to 5 stabilize within a Si cage, achieving a 68-electron configuration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!