A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel Sulfate Reduction Coupled to Simultaneous Nitrification and Autotrophic Denitrification Process for Removing Nitrogen and Organics from Saline Wastewater. | LitMetric

Novel Sulfate Reduction Coupled to Simultaneous Nitrification and Autotrophic Denitrification Process for Removing Nitrogen and Organics from Saline Wastewater.

Environ Sci Technol

MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.

Published: July 2023

Highly efficient sulfate reduction coupled to autotrophic denitrification plus nitrification is demonstrated by integrating an anaerobic membrane bioreactor (AnMBR) with a membrane aerated biofilm reactor (MABR). Concurrent chemical oxygen demand (COD) removal and sulfate reduction were accomplished in the AnMBR, while simultaneous nitrification and autotrophic denitrification were carried out in the MABR. Separate operation of the MABR achieved >90% total nitrogen (TN) removal when the N/S ratio was controlled at 0.4 gN/gS. The integrated AnMBR-MABR system efficiently resisted influent variability, realizing >95% COD removal in the AnMBR and >75% TN removal in the MABR when the influent COD/N ratio was above 4 gCOD/gN. Membrane fouling did not happen during ∼170 days of operation. Due to sulfide oxidation, a large amount of elemental sulfur (S) accumulated in the MABR biofilm, where it served as an electron donor for denitrification. Microbial community analysis indicated that and played key roles in nitrification and sulfide-driven denitrification, respectively, and that they occurred in different layers of the biofilm. This novel process offers advantages of a small land-area footprint, modular operation, and high efficiency electron-donor and oxygen utilizations, particularly for wastewater with a low COD/N ratio.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.3c01936DOI Listing

Publication Analysis

Top Keywords

sulfate reduction
12
autotrophic denitrification
12
reduction coupled
8
simultaneous nitrification
8
nitrification autotrophic
8
cod removal
8
cod/n ratio
8
denitrification
5
mabr
5
novel sulfate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!