Dissecting Parameters Contributing to the Underprediction of Aldehyde Oxidase-Mediated Metabolic Clearance of Drugs.

Drug Metab Dispos

Department of Pharmaceutical Sciences, Washington State University (WSU), Spokane, Washington (S.S., D.K.S., D.S.A., B.P.); Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (S.C.K., R.S.J.); Drug Metabolism, Gilead Sciences, Foster City, California (B.P.M., B.J.S.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, San Diego, California (M.A.Z.); Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Cambridge, Massachusetts (P.K.); BioIVT Inc., Baltimore, Maryland (S.H.); and Structural Biology and Protein Sciences, Pfizer Global Research & Development and Medical, La Jolla, California (C.N.C.)

Published: October 2023

We investigated the effect of variability and instability in aldehyde oxidase (AO) content and activity on the scaling of in vitro metabolism data. AO content and activity in human liver cytosol (HLC) and five recombinant human AO preparations (rAO) were determined using targeted proteomics and carbazeran oxidation assay, respectively. AO content was highly variable as indicated by the relative expression factor (REF; i.e., HLC to rAO content) ranging from 0.001 to 1.7 across different in vitro systems. The activity of AO in HLC degrades at a 10-fold higher rate in the presence of the substrate as compared with the activity performed after preincubation without substrate. To scale the metabolic activity from rAO to HLC, a protein-normalized activity factor (pnAF) was proposed wherein the activity was corrected by AO content, which revealed up to sixfold higher AO activity in HLC versus rAO systems. A similar value of pnAF was observed for another substrate, ripasudil. Physiologically based pharmacokinetic (PBPK) modeling revealed a significant additional clearance (CL; 66%), which allowed for the successful prediction of in vivo CL of four other substrates, i.e., O-benzyl guanine, BIBX1382, zaleplon, and zoniporide. For carbazeran, the metabolite identification study showed that the direct glucuronidation may be contributing to around 12% elimination. Taken together, this study identified differential protein content, instability of in vitro activity, role of additional AO clearance, and unaccounted metabolic pathways as plausible reasons for the underprediction of AO-mediated drug metabolism. Consideration of these factors and integration of REF and pnAF in PBPK models will allow better prediction of AO metabolism. SIGNIFICANCE STATEMENT: This study elucidated the plausible reasons for the underprediction of aldehyde oxidase (AO)-mediated drug metabolism and provided recommendations to address them. It demonstrated that integrating protein content and activity differences and accounting for the loss of AO activity, as well as consideration of extrahepatic clearance and additional pathways, would improve the in vitro to in vivo extrapolation of AO-mediated drug metabolism using physiologically based pharmacokinetic modeling.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.123.001379DOI Listing

Publication Analysis

Top Keywords

content activity
12
ao-mediated drug
12
drug metabolism
12
activity
11
underprediction aldehyde
8
aldehyde oxidase
8
activity hlc
8
physiologically based
8
based pharmacokinetic
8
additional clearance
8

Similar Publications

Cancer cell overexpresses numerus proteins, however, how these up-regulated proteins, especially those enzymatically opposite kinases and phosphatases, act together to promote oncogenesis is unknown. Here, we reported that protein tyrosine phosphatase H1 (PTPH1) is a scaffold protein for receptor tyrosine kinase (HER2) to potentiate breast tumorigenesis. PTPH1 utilizes its PDZ domain to bind HER2, p38γ, PBK, and YAP1 and to increase HER2 nuclear translocation, stemness, and oncogenesis.

View Article and Find Full Text PDF

Radiation therapy is one of the most effective treatments for approximately 60% of patients with cancer. During radiation exposure, the overproduction of reactive oxygen species (ROS) disrupts the lipid layer of the membrane, leading to subsequent peroxide radical formation. Cimetidine (Cim) and famotidine (Fam) are histamine H2 receptor antagonists (H2 blocker), also known as peptic ulcer drugs, that exert radioprotective effects.

View Article and Find Full Text PDF

Microbial pathogens generate extracellular vesicles (EVs) for intercellular communication and quorum sensing. Microbial EVs also induce inflammatory pathways within host innate immune cells. We previously demonstrated that EVs secreted by trigger type I interferon signaling in host cells specifically via the cGAS-STING innate immune signaling pathway.

View Article and Find Full Text PDF

Pro-biogenic is a recent terminology widely used for products that combine biogenic materials and probiotics which has made progressive improvement in a new era of research on functional foods. This study aimed to develop functional ice cream with and propolis extract (PE) as a biogenic part to develop ice cream's physiochemical and antioxidant characteristics. Five probiotic ice cream samples were prepared using different levels of PE powder (0%, 0.

View Article and Find Full Text PDF

In this study, we conducted a thorough analysis of (RT) and (COF) extracts with varying polarities using LC-MS chemical profiling and biological tests (antioxidant, antimicrobial, enzyme inhibition, and cytotoxic effects). The highest level of total phenolic content in the ethanol extract of RT with 75.82 mg GAE/g, followed by the infusions of RT (65.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!