Background: In experimental studies, intravitreally applied antibodies against epidermal growth factor (EGF), EGF family members (amphiregulin, neuregulin-1, betacellulin, epigen, epiregulin) and against the EGF receptor (EGFR) were associated with a reduction in lens-induced axial elongation and decrease in physiological eye elongation in guinea pigs and in non-human primates. Here, we investigated the intraocular tolerability and safety of a fully human monoclonal IgG2-antibody against EGFR, already in clinical use in oncology, as a potential future therapeutic approach for axial elongation in adult eyes with pathological myopia.
Methods: The clinical, monocentre, open-label, multiple-dose, phase-1 study included patients with myopic macular degeneration of stage 4, who received intravitreal injections of panitumumab in various doses and in intervals ranging between 2.1 months and 6.3 months.
Results: The study included 11 patients (age:66.8±6.3 years), receiving panitumumab injections in doses of 0.6 mg (4 eyes; 1×1 injection, 3×2 injections), 1.2 mg (4 eyes; 1×1 injection, 2×2 injections, 1×3 injections) and 1.8 mg (3 eyes; 1×1 injection, 2×2 injections), respectively. None of the participants showed treatment-emergent systemic adverse events or intraocular inflammatory reactions. Best-corrected visual acuity (1.62±0.47 logarithm of the minimal angle of resolution (logMAR) vs 1.28±0.59 logMAR; p=0.08) and intraocular pressure (13.8±2.4 mm Hg vs 14.3±2.6 mm Hg; p=0.20) remained unchanged. In nine patients with a follow-up of >3 months (mean:6.7±2.7 months), axial length did not change significantly (30.73±1.03 mm vs 30.77±1.19 mm; p=0.56).
Conclusions: In this open-labelled, phase-1 study with a mean follow-up of 6.7 months, panitumumab repeatedly administered intravitreally up to a dose of 1.8 mg was not associated with intraocular or systemic adverse effects. During the study period, axial length remained unchanged.
Trial Registration Number: DRKS00027302.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/bjo-2023-323383 | DOI Listing |
Nat Commun
December 2024
ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China.
Thiamine and pyridoxine are essential B vitamins that serve as enzymatic cofactors in energy metabolism, protein and nucleic acid biosynthesis, and neurotransmitter production. In humans, thiamine transporters SLC19A2 and SLC19A3 primarily regulate cellular uptake of both vitamins. Genetic mutations in these transporters, which cause thiamine and pyridoxine deficiency, have been implicated in severe neurometabolic diseases.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
Oxidative modifications can disrupt protein folds and functions, and are strongly associated with human aging and diseases. Conventional oxidation pathways typically involve the free diffusion of reactive oxygen species (ROS), which primarily attack the protein surface. Yet, it remains unclear whether and how internal protein folds capable of trapping oxygen (O) contribute to oxidative damage.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
The lamprey, a primitive jawless vertebrate whose ancestors diverged from all other vertebrates over 500 million years ago, offers a unique window into the ancient formation of the retina. Using single-cell RNA-sequencing, we characterize retinal cell types in the lamprey and compare them to those in mouse, chicken, and zebrafish. We find six cell classes and 74 distinct cell types, many shared with other vertebrate species.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Ophthalmology, Columbia University, New York, NY, USA.
Best1 and Best2 are two members of the bestrophin family of anion channels critically involved in the prevention of retinal degeneration and maintenance of intraocular pressure, respectively. Here, we solved glutamate- and γ-aminobutyric acid (GABA)-bound Best2 structures, which delineate an intracellular glutamate binding site and an extracellular GABA binding site on Best2, respectively, identified extracellular GABA as a permeable activator of Best2, and elucidated the co-regulation of Best2 by glutamate, GABA and glutamine synthetase in vivo. We further identified multiple small molecules as activators of the bestrophin channels.
View Article and Find Full Text PDFNat Commun
December 2024
Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
Currently there are no effective treatments for an array of neurodegenerative disorders to a large part because cell-based models fail to recapitulate disease. Here we develop a reproducible human iPSC-based model where laser axotomy causes retrograde axon degeneration leading to neuronal cell death. Time-lapse confocal imaging revealed that damage triggers an apoptotic wave of mitochondrial fission proceeding from the site of injury to the soma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!