Objectives: We isolated a highly colistin-resistant Escherichia coli, strain 58, from fresh chicken wings in Lebanon. Here, we performed in-depth phenotypic and genomic analyses to identify the resistome of the isolate, focusing on the determinants that encoded colistin resistance.
Methods: The minimum inhibitory concentration (MIC) of colistin and resistance to other antibiotics were determined using the broth microdilution method and the Kirby-Bauer disk diffusion assay, respectively. Whole-genome sequencing (WGS) and different software available at the Center of Genomic Epidemiology were used to predict the resistome, the sequence type (ST), and the presence of virulence genes and plasmid replicon types.
Results: Susceptibility testing revealed that E. coli 58 exhibited multidrug resistance, including against colistin (MIC = 32 µg/mL). Whole-genome sequencing analyses showed that E. coli 58 carried 26 antimicrobial resistance genes associated with resistance to polymyxins (mcr-1.26), β-lactams (blaTEM-1b and blaCMY-2), fosfomycin (fosA4), aminoglycosides (aac(3)-IId, aadA2b, aadA5, partial aadA1, aph(3'')-Ia, aph(3')-Ia, and aph(6)-Id), tetracyclines (tetA and tetM), quinolones (qnrS1), sulphonamides (sul2 and sul3), trimethoprim (dfrA14, dfrA17, and dfrA5), phenicols (floR and cmlA1), macrolides (mphA), lincosamides (lnu(F)), quaternary ammonium compounds (partial qacL and qacE), and peroxides (sitABCD). mcr-1.26 was located on an IncX4 plasmid and induced colistin resistance in otherwise naïve E. coli and Salmonella Enteritidis. Escherichia coli 58 was predicted to be a human pathogen and belonged to ST3107.
Conclusion: To our knowledge, this is the first report of mcr-1.26 in poultry meat worldwide. We previously reported mcr-1.26 in an MDR E. coli (ST2207) isolated from a pigeon in Lebanon, which suggests that it might be spreading in different animal hosts and genetic backgrounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jgar.2023.07.005 | DOI Listing |
Drug Resist Updat
January 2025
University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Water Protection Engineering and Environmental Microbiology, Olsztyn 10-720, Poland.
The aquatic environment is a major pathway for the spread of antibiotic resistance (AR) among microorganisms. Among these, Klebsiella pneumoniae reveals high genome plasticity, adaptability, and the ability to colonize humans, animals, and the natural environment, awarding it a significant role in the spread of AR. This work presents an in-depth analysis of the whole sequences of 149 K.
View Article and Find Full Text PDFActa Microbiol Immunol Hung
January 2025
1Department of Biomedical Sciences, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece.
The spread of NDM-1-harboring Klebsiella pneumoniae is a worldwide concern. In this study the whole-genome sequence (WGS) of a carbapenem- and colistin-resistant K. pneumoniae 838Gr strain is presented.
View Article and Find Full Text PDFFoodborne Pathog Dis
January 2025
Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea.
Antimicrobial-resistant bacterial contamination of meat poses a significant global public health risk. We aimed to determine antimicrobial resistance profiles and trends of recovered from carcasses of healthy food-producing animals in South Korea during 2010-2023. In total, 4748 isolates obtained from cattle ( = 1582), pigs ( = 1572), and chickens ( = 1594) were assessed for susceptibility to 12 antimicrobials.
View Article and Find Full Text PDFNPJ Antimicrob Resist
January 2025
Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
Ceftazidime-avibactam (CZA) is currently one of the last resorts used to treat infections caused by carbapenem-resistant Enterobacteriaceae and Pseudomonas aeruginosa. However, KPC variants have become the main mechanism mediating CZA resistance in KPC-producing gram-negative bacteria after increasing the application of CZA. Our previous study revealed that CZA-resistant KPC-33 had emerged in carbapenem-resistant P.
View Article and Find Full Text PDFNPJ Antimicrob Resist
January 2024
Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW, Australia.
Acinetobacter baumannii is a Gram-negative pathogen responsible for hospital-acquired infections with high levels of antimicrobial resistance (AMR). The spread of multidrug-resistant A. baumannii strains has become a global concern.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!