Background: Maternal anticoagulation use may increase indeterminate result rates on cell-free DNA-based screening, but existing studies are confounded by inclusion of individuals with autoimmune disease, which alone is associated with indeterminate results. Changes in chromosome level Z-scores are proposed by others as a reason for indeterminate results, but the etiology of this is uncertain.

Objective: This study aimed to evaluate differences in fetal fraction, indeterminate result rate, and total cell-free DNA concentration in individuals on anticoagulation without autoimmune disease compared with controls undergoing noninvasive prenatal screening. Secondly, using a nested case-control design, we evaluated differences in fragment size, GC-content, and Z-scores to evaluate laboratory-level test characteristics.

Study Design: This was a retrospective single-institution study of pregnant individuals undergoing cell-free DNA-based noninvasive prenatal screening using low-pass whole-genome sequencing between 2017 and 2021. Individuals with autoimmune disease, suspected aneuploidy, and cases where fetal fraction was not reported were excluded. Anticoagulation included heparin-derived products (unfractionated heparin, low-molecular-weight heparin), clopidogrel, and fondaparinux, with a separate group for those on aspirin alone. An indeterminate result was defined as fetal fraction <4%. We evaluated the association between maternal anticoagulation or aspirin use, and fetal fraction, indeterminate results, and total cell-free DNA concentration using univariate and multivariate analyses, controlling for body mass index, gestational age at sample collection, and fetal sex. For the anticoagulation cohort, we compared laboratory-level test characteristics among cases (on anticoagulation) and a subset of controls. Lastly, we evaluated for differences in chromosome level Z-scores among those on anticoagulation with and without indeterminate results.

Results: A total of 1707 pregnant individuals met the inclusion criteria. Of those, 29 were on anticoagulation and 81 were on aspirin alone. For those on anticoagulation, the fetal fraction was significantly lower (9.3% vs 11.7%; P<.01), the indeterminate result rate was significantly higher (17.2% vs 2.7%; P<.001), and the total cell-free DNA concentration was significantly higher (218 pg/μL vs 83.7 pg/μL; P<.001). Among those on aspirin alone, the fetal fraction was lower (10.6% vs 11.8%; P=.04); however, there were no differences in the rate of indeterminate results (3.7% vs 2.7%; P=.57) or total cell-free DNA concentration (90.1 pg/μL vs 83.8 pg/μL; P=.31). After controlling for maternal body mass index, gestational age at sample collection, and fetal sex, anticoagulation was associated with an >8-fold increase in the likelihood of an indeterminate result (adjusted odds ratio, 8.7; 95% confidence interval, 3.1-24.9; P<.001), but not aspirin (adjusted odds ratio, 1.2; 95% confidence interval, 0.3-4.1; P=.8). Anticoagulation was not associated with appreciable differences in cell-free DNA fragment size or GC-content. Although differences in chromosome 13 Z-scores were observed, none were observed for chromosomes 18 or 21, and this difference did not contribute to the indeterminate result call.

Conclusion: In the absence of autoimmune disease, anticoagulation use, but not aspirin, is associated with lower fetal fraction, higher total cell-free DNA concentration, and higher rates of indeterminate results. Anticoagulation use was not accompanied by differences in cell-free DNA fragment size or GC-content. Statistical differences in chromosome level Z-scores did not clinically affect aneuploidy detection. This suggests a likely dilutional effect by anticoagulation on cell-free DNA-based noninvasive prenatal screening assays contributing to low fetal fraction and indeterminate results, and not laboratory or sequencing-level changes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10772208PMC
http://dx.doi.org/10.1016/j.ajog.2023.07.005DOI Listing

Publication Analysis

Top Keywords

fetal fraction
16
indeterminate result
12
autoimmune disease
12
fraction indeterminate
8
cell-free dna-based
8
individuals autoimmune
8
noninvasive prenatal
8
prenatal screening
8
indeterminate
6
anticoagulation
4

Similar Publications

A novel diagnostic model for fetal coarctation of the aorta with ventricular septal defect.

Int J Cardiol

December 2024

Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China. Electronic address:

Background: Our study aimed to develop a novel diagnostic model for fetal coarctation of the aorta with ventricular septal defect(CoA/VSD).

Methods And Results: We respectively included 70 fetuses with suspected CoA/VSD(January 2017-June 2023). After birth, 26 fetuses (26/47, 55.

View Article and Find Full Text PDF

To investigate the promoting effect of extracellular vesicles derived from myocardial cells (CM-EVs) on the reprogramming of cardiac fibroblasts (CFs) into cardiomyocyte-like cells (iCMs) and their therapeutic effect on myocardial infarction (MI) in rats. Cell experiments: The differential adhesion method was used to obtain Sprague Dawley (SD) suckling rat CFs and cardiomyocytes (CMs), while the ultracentrifugation method was used to obtain CM-EVs. Transmission electron microscopy and nanoparticle tracking technology were used to analyze and determine the morphology and particle size of CM-EVs.

View Article and Find Full Text PDF

Best Practice & Research clinical obstetrics & gynaecology.

Best Pract Res Clin Obstet Gynaecol

December 2024

University of California, San Francisco, Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Maternal-Fetal Medicine, 1825 Fourth St, Third Floor, San Francisco, CA, 94158, USA; University of California, San Francisco, Institute of Human Genetics, 1825 Fourth St, Third Floor, San Francisco, CA, 94158, USA. Electronic address:

Screening for fetal genetic disorders is a focus of prenatal care. Cell free DNA (cfDNA) screening for aneuploidies became available in 2011. Initially available only to high-risk individuals, this test is now standard of care in many settings.

View Article and Find Full Text PDF

Adaptation of Left Ventricular Function and Myocardial Microstructure in Fetuses with Right Ventricular Hypoplasia.

Can J Cardiol

December 2024

Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China. Electronic address:

Background: This study aimed to evaluate changes in left ventricular (LV) function and myocardial microstructure in fetuses with right ventricular hypoplasia (RVH) using two-dimensional speckle tracking echocardiography (2D-STE), diffusion tensor cardiovascular magnetic resonance imaging (DT-CMR) and proteomics analysis.

Methods: 51 singleton fetuses diagnosed with RVH and 51 normal fetuses were retrospectively included. LV global longitudinal strain (GLS) and global circumferential strain (GCS) were acquired by 2D-STE.

View Article and Find Full Text PDF

Background: Small fetuses include constitutional small for gestational age (SGA) and fetal growth-restricted (FGR) fetuses. Various adverse intrauterine environments can lead to FGR which has higher risk of abnormal perinatal outcome. The fetal heart is very sensitive to the effects of a negative intrauterine environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!