Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The rare presence of circulating tumor cells (CTCs) in the bloodstream has made their recording and separation one of the major challenges in the recent decade. Inertia-based microfluidic systems have received more attention in CTCs separation due to their feasibility and low cost. In this research, an inertial microfluidic system is proposed using a curved expansion-contraction array (CEA) microchannel to separate CTCs from white blood cells (WBCs). First, the optimal flow rate of the proposed microfluidic device was determined to maximize the separation efficiency of the target cells (CTCs) from the non-target ones (WBCs). Then, the efficiency and purity of the straight and curved-CEA microchannels were assessed. The experimental results indiated that the proposed system (curved-CEA microchannel) can offer the highest efficiency (-80.31%) and purity (-91.32%) at the flow rate of -7.5 ml/min, exhibiting ∼11.48% increment in the efficiency compared to its straight peer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2023.464200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!