A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A curved expansion-contraction microfluidic structure for inertial based separation of circulating tumor cells from blood samples. | LitMetric

A curved expansion-contraction microfluidic structure for inertial based separation of circulating tumor cells from blood samples.

J Chromatogr A

Nano-Bioengineering Lab, Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran 11365-11155, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran. Electronic address:

Published: August 2023

The rare presence of circulating tumor cells (CTCs) in the bloodstream has made their recording and separation one of the major challenges in the recent decade. Inertia-based microfluidic systems have received more attention in CTCs separation due to their feasibility and low cost. In this research, an inertial microfluidic system is proposed using a curved expansion-contraction array (CEA) microchannel to separate CTCs from white blood cells (WBCs). First, the optimal flow rate of the proposed microfluidic device was determined to maximize the separation efficiency of the target cells (CTCs) from the non-target ones (WBCs). Then, the efficiency and purity of the straight and curved-CEA microchannels were assessed. The experimental results indiated that the proposed system (curved-CEA microchannel) can offer the highest efficiency (-80.31%) and purity (-91.32%) at the flow rate of -7.5 ml/min, exhibiting ∼11.48% increment in the efficiency compared to its straight peer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2023.464200DOI Listing

Publication Analysis

Top Keywords

curved expansion-contraction
8
circulating tumor
8
tumor cells
8
cells ctcs
8
flow rate
8
microfluidic
4
expansion-contraction microfluidic
4
microfluidic structure
4
structure inertial
4
inertial based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!