Sedimentary organic matter provides carbon substrates and energy sources for microorganisms, which drive benthic biogeochemical processes and in turn modify the quantity and quality of dissolved organic matter (DOM). However, the molecular composition and distribution of DOM and its interactions with microbes in deep-sea sediments remain poorly understood. Here, molecular composition of DOM and its relationship with microbes were analyzed in samples collected from two sediment cores (∼40 cm below the sea floor), at depths of 1157 and 2253 m from the South China Sea. Results show that niche differentiation was observed on a fine scale in different sediment layers, with Proteobacteria and Nitrososphaeria dominating the shallow sediments (0-6 cm) and Chloroflexi and Bathyarchaeia prevailing in deeper sediments (6-40 cm), indicating correspondence of microbial community composition with both geographical isolation and the availability of organic matter. An intimate link between the DOM composition and microbial community further indicates that, microbial mineralization of fresh organic matter in the shallow layer potentially resulted in the accumulation of recalcitrant DOM (RDOM), while relatively low abundance of RDOM was linked to anaerobic microbial utilization in deeper sediment layers. In addition, higher RDOM abundance in the overlying water, as compared to that in the surface sediment, suggests that sediment might be a source of deep-sea RDOM. These results emphasize the close relation between the distribution of sediment DOM and different microbial community, laying a foundation for understanding the complex dynamics of RDOM in deep-sea sediment and water column.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2023.108080 | DOI Listing |
Sci Rep
December 2024
Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Falmouth, USA.
Coral reef sponges efficiently take up particulate and dissolved organic matter (DOM) from the water column and release compounds such as nucleosides, amino acids, and other dissolved metabolites to the surrounding reef via their exhalent seawater, but the influence of this process on reef picoplankton and nutrient processing is relatively unexplored. Here we examined the impact of sponge exhalent on the reef picoplankon community and subsequent alterations to the reef dissolved metabolite pool. We exposed reef picoplankton communities to a sponge exhalent water mixture (Niphates digitalis and Xestospongia muta) or filtered reef seawater (control) in closed, container-based dark incubations.
View Article and Find Full Text PDFVegetation restoration can be effective in containing gully head advance. However, the effect of vegetation restoration type on soil aggregate stability and erosion resistance at the head of the gully is unclear. In this study, five types of vegetation restoration-Pinus tabulaeformis (PT), Prunus sibirica (PS), Caragana korshinskii (CKS), Hippophae rhamnoides (HR), and natural grassland (NG, the dominant species is Leymus chinensis)-in the gully head were studied.
View Article and Find Full Text PDFChemosphere
December 2024
Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan. Electronic address:
Visible light photocatalysts hold great promise for water purification, yet research on highly efficient, non-toxic photocatalysts is limited. This study synthesized novel g-CN/AlOOH photocatalytic nanocomposites via thermal condensation, enhancing adsorption and visible light degradation by 36-fold and 11-fold, respectively, compared to g-CN alone. The nanocomposites achieved a 98% removal rate of methyl orange under xenon lamp irradiation (>400 nm) for 1 hour.
View Article and Find Full Text PDFChemosphere
December 2024
Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan 430068, China. Electronic address:
Cyanobacterial blooms are prevalent globally and present a significant threat to water security. Titanium salt coagulants have garnered considerable attention due to their superior coagulation properties and the absence of metal residue risks. This paper explored the influencing factors in the coagulation process of titanium xerogel coagulant (TXC), the alterations in cell activity during floc storage, and the release of cyanobacterial organic matters, thereby determining the application scope of TXC for cyanobacterial water treatment.
View Article and Find Full Text PDFBioresour Technol
December 2024
School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China. Electronic address:
Biodegradable plastics (BPs) and lignite, both rich in organic matter, present significant challenges for efficient conversion into clean energy. This study examined the anaerobic co-digestion of BPs and lignite under controlled laboratory conditions. The results demonstrated that the co-digestion of polylactic acid (PLA) and lignite (at a 1:2 mass ratio, with 5 g PLA and 10 g lignite as the model system) rapidly acclimated to the anaerobic environment, enhancing cumulative biogas production by 57 % compared to the mono-digestion of lignite alone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!