Circadian behavioral rhythms in are regulated by about 75 pairs of brain neurons. They all express the core clock genes but have distinct functions and gene expression profiles. To understand the importance of these distinct molecular programs, neuron-specific gene manipulations are essential. Although RNAi based methods are standard to manipulate gene expression in a cell-specific manner, they are often ineffective, especially in assays involving smaller numbers of neurons or weaker Gal4 drivers. We and others recently exploited a neuron-specific CRISPR-based method to mutagenize genes within circadian neurons. Here, we further explore this approach to mutagenize three well-studied clock genes: the transcription factor gene the photoreceptor gene (), and the neuropeptide gene (pigment dispersing factor). The CRISPR-based strategy not only reproduced their known phenotypes but also assigned function for different light-mediated phenotypes to discrete, different subsets of clock neurons. We further tested two recently published methods for temporal regulation in adult neurons, inducible Cas9 and the auxin-inducible gene expression system. The results were not identical, but both approaches successfully showed that the adult-specific knockout of the neuropeptide reproduces the canonical loss-of-function mutant phenotypes. In summary, a CRISPR-based strategy is a highly effective, reliable, and general method to temporally manipulate gene function in specific adult neurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629539 | PMC |
http://dx.doi.org/10.1073/pnas.2303779120 | DOI Listing |
Elife
January 2025
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, United States.
Single-nucleus RNA sequencing (snRNA-seq), an alternative to single-cell RNA sequencing (scRNA-seq), encounters technical challenges in obtaining high-quality nuclei and RNA, persistently hindering its applications. Here, we present a robust technique for isolating nuclei across various tissue types, remarkably enhancing snRNA-seq data quality. Employing this approach, we comprehensively characterize the depot-dependent cellular dynamics of various cell types underlying mouse adipose tissue remodeling during obesity.
View Article and Find Full Text PDFCancer Immunol Res
January 2025
Vanderbilt University, Nashville, TN, United States.
Tumor-specific HLA class I expression is required for cytotoxic T-cell elimination of cancer cells expressing tumor-associated or neo-antigens. Cancers downregulate antigen presentation to avoid adaptive immunity. The highly polymorphic nature of the genes encoding these proteins, coupled with quaternary-structure changes after formalin fixation, complicate detection by immunohistochemistry.
View Article and Find Full Text PDFRNA Biol
December 2025
Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan.
This study aimed to identify differentially expressed non-coding RNAs (ncRNAs) associated with preterm birth (PTB) and determine biological pathways being influenced in the context of PTB. We processed cell-free RNA sequencing data and identified seventeen differentially expressed (DE) ncRNAs that could be involved in the onset of PTB. Per the validation via customized RT-qPCR, the recorded variations in expressions of eleven ncRNAs were concordant with the analyses.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
Purpose: Previous studies have reported divergent sexual responses to aging; however, specific variations in gene expression between aging males and females and their potential association with age-related retinal diseases remain unclear. This study collected data from public databases and developed a comprehensive comparison of retina between aging females and males.
Methods: Single-cell RNA (scRNA) and bulk RNA sequencing data of the aging retina from females and males in public databases were utilized for integrated analysis to investigate sex-biased expression in retina.
Head Neck Pathol
January 2025
Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Purpose: Recurrent diffuse-type tenosynovial giant cell tumor: Clinical presentation, Diagnosis, and Management.
Background: Tenosynovial giant cell tumor (TGCT), is a neoplasm arising from synovial joints, bursae, or tendon sheaths. The initial clinical symptoms are vague and non-diagnostic.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!