Buruli ulcer is a chronic infectious disease caused by Mycobacterium ulcerans. The pathogen persistence in host skin is associated with the development of ulcerative and necrotic lesions leading to permanent disabilities in most patients. However, few of diagnosed cases are thought to resolve through an unknown self-healing process. Using in vitro and in vivo mouse models and M. ulcerans purified vesicles and mycolactone, we showed that the development of an innate immune tolerance was only specific to macrophages from mice able to heal spontaneously. This tolerance mechanism depends on a type I interferon response and can be induced by interferon beta. A type I interferon signature was further detected during in vivo infection in mice as well as in skin samples from patients under antibiotics regiment. Our results indicate that type I interferon-related genes expressed in macrophages may promote tolerance and healing during infection with skin damaging pathogen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10358927PMC
http://dx.doi.org/10.1371/journal.ppat.1011479DOI Listing

Publication Analysis

Top Keywords

innate immune
8
immune tolerance
8
mycobacterium ulcerans
8
type interferon
8
type-i interferons
4
interferons promote
4
promote innate
4
tolerance
4
tolerance macrophages
4
macrophages exposed
4

Similar Publications

Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.

View Article and Find Full Text PDF

Background: Accumulating evidence suggests that the presynaptic protein α-synuclein (α-syn), is involved in the pathophysiology of AD and elevated in the cerebrospinal fluid (CSF). The role of Natural Killer (NK) cells of the innate immune system in AD has largely been overlooked. In a murine model, depletion of NK cells augmented the accumulation of pathological α-syn.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Inserm, Sorbonne Université, Centre de Recherche Saint-Antoine, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France.

Background: Chronic innate neuroinflammation mediated by microglia and astrocytes in response to Aβ and pathological Tau species is a cardinal feature of AD that contributes to disease pathogenesis. Accumulating evidence now also highlight an instrumental role of T cells and peripheral-central immune crosstalk in the pathophysiology of AD. Both preclinical and clinical reports suggest the potential therapeutic interest of peripheral immunomodulatory approaches aimed at amplifying regulatory T cells (Tregs), e.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.

Women account for almost two-thirds of Alzheimer's disease (AD) cases, yet evidence significantly less clinical benefit from recently deployed amyloid-lowering therapies. To close this disparity gap, there is an urgent need to identify biological drivers of sex differences in the manifestation and clinical response to AD therapeutics. A recent review of multi-omic studies of AD reported >75% of studies showed female-specific changes at the molecular level (vs.

View Article and Find Full Text PDF

The present study evaluated the immunomodulatory and disease resistance-enhancing effects of dietary supplementation of Withania somnifera root powder in Labeo rohita (22.10 ± 3.30 g, 12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!