Klebsiella pneumoniae and Klebsiella quasipneumoniae are closely related human pathogens of global concern. The more recently described K. quasipneumoniae shares similar morphological characteristics with K. pneumoniae and is commonly misidentified as this species using traditional laboratory techniques. The vast mobilome in these pathogenic bacteria influences the dissemination of virulence factors in high-risk environments and it is, therefore, critical to monitor strains for developing effective clinical management strategies. Herein, this study utilized Illumina sequencing to characterize the whole genomes of nine clinical K. pneumoniae and one K. quasipneumoniae isolate obtained from patients of 3 major hospitals in Trinidad, West Indies. Reconstruction of the assembled genomes and implementation of several bioinformatic tools revealed unique features such as high pathogenicity islands associated with the isolates. The K. pneumoniae isolates were categorized as classical (n = 3), uropathogenic (n = 5), or hypervirulent (n = 1) strains. In silico multilocus sequence typing, and phylogenetic analysis showed that isolates were related to several international high-risk genotypes, including sequence types ST11, ST15, ST86, and ST307. Analysis of the virulome and mobilome of these pathogens showed unique and clinically important features including the presence of genes associated with Type 1 and Type 3 fimbriae, the aerobactin and yersiniabactin siderophore systems, the K2 and O1/2, and the O3 and O5 serotypes. These genes were either on or in close proximity to insertion sequence elements, phage sequences, and plasmids. Several secretion systems including the Type VI system and relevant effector proteins were prevalent in the local isolates. This is the first comprehensive study investigating the genomes of clinical K. pneumoniae and K. quasipneumoniae isolates from Trinidad, West Indies. The data presented illustrate the diversity of Trinidadian clinical K. pneumoniae isolates as well as significant virulence biomarkers and mobile elements associated with these isolates. Additionally, the genomes of the local isolates will add to global databases and thus can be used in future surveillance or genomic studies in this country and the wider Caribbean region.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10332597 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0283583 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!