Bioelectrocatalytic synthesis is the conversion of electrical energy into value-added products using biocatalysts. These methods merge the specificity and selectivity of biocatalysis and energy-related electrocatalysis to address challenges in the sustainable synthesis of pharmaceuticals, commodity chemicals, fuels, feedstocks and fertilizers. However, the specialized experimental setups and domain knowledge for bioelectrocatalysis pose a significant barrier to adoption. This review introduces key concepts of bioelectrosynthetic systems. We provide a tutorial on the methods of biocatalyst utilization, the setup of bioelectrosynthetic cells, and the analytical methods for assessing bioelectrocatalysts. Key applications of bioelectrosynthesis in ammonia production and small-molecule synthesis are outlined for both enzymatic and microbial systems. This review serves as a necessary introduction and resource for the non-specialist interested in bioelectrosynthetic research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202307780 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany.
We propose a hybrid electrocatalytic-bioelectrocatalytic reaction cascade integrated on a gas diffusion electrode for CO reduction under selective formation of methanol. Ag-BiO selectively reduces gaseous CO to formate at neutral pH conditions. A subsequent enzymatic cascade comprising formaldehyde dehydrogenase and alcohol dehydrogenase, which are both nicotinamide adenine dinucleotide (NAD)-dependent, further reduce formate sequentially to formaldehyde and methanol.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.
Enzymatic fuel cells (EFCs) are emerging as promising technologies in renewable energy and biomedical applications, utilizing enzyme catalysts to convert the chemical energy of renewable biomass into electrical energy, known for their high energy conversion efficiency and excellent biocompatibility. Currently, EFCs face challenges of poor stability and catalytic efficiency at the cathodes, necessitating solutions to enhance the oriented immobilization of multicopper oxidases for improved heterogeneous electron transfer efficiency. This study successfully identified a surface-binding peptide (SBP, 13 amino acids) derived from a methionine-rich fragment (MetRich, 53 amino acids) in CueO through semirational design.
View Article and Find Full Text PDFTrends Biotechnol
December 2024
School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea. Electronic address:
Advances in protein engineering-enabled enzyme immobilization technologies have significantly improved enzyme-electrode wiring in enzymatic electrochemical systems, which harness natural biological machinery to either generate electricity or synthesize biochemicals. In this review, we provide guidelines for designing enzyme-electrodes, focusing on how performance variables change depending on electron transfer (ET) mechanisms. Recent advancements in enzyme immobilization technologies are summarized, highlighting their contributions to extending enzyme-electrode sustainability (up to months), enhancing biosensor sensitivity, improving biofuel cell performance, and setting a new benchmark for turnover frequency in bioelectrocatalysis.
View Article and Find Full Text PDFBioelectrochemistry
April 2025
Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain. Electronic address:
Nat Commun
November 2024
Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 west 7th Avenue, Tianjin Airport Economic Area, Tianjin, China.
Electrocatalytic carbon dioxide (CO) reduction by CO reductases is a promising approach for biomanufacturing. Among all known biological or chemical catalysts, hydrogen-dependent carbon dioxide reductase from Thermoanaerobacter kivui (TkHDCR) possesses the highest activity toward CO reduction. Herein, we engineer TkHDCR to generate an electro-responsive carbon dioxide reductase considering the safety and convenience.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!