Particulate matters (PM) and volatile organic compounds (VOCs) are the sources of toxic substances that hurt human health and can cause human carcinogens. An active living wall was applied to reduce PM and VOC contamination, while Sansevieria trifasciata cv. Hahnii, a high-performance plant for VOC removal, was selected to grow on the developing wall and used to treat PM and VOCs. The active living wall operating in a 24 m testing chamber showed the ability to remediate more than 90% PM within 12 h. The VOC removal can be approximately 25-80% depending on each compound. In addition, the suitable flow velocity of the living wall was also investigated. The flow rate of 1.7 m h in front of the living wall was found as the best inlet flow velocity for the developed active living wall. The suitable condition for PM and VOC removal in the active living wall application on the real side was presented in this study. The result confirmed that the application of an active living wall for PM phytoremediation can be an alternative effective technology.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-28480-2DOI Listing

Publication Analysis

Top Keywords

living wall
32
active living
24
voc removal
12
wall
9
flow velocity
8
living
7
active
6
voc
5
wall particulate
4
particulate matter
4

Similar Publications

The shielding performance and activation susceptibility of a sandwich wall in the proton therapy facility of China Medical University Hospital were investigated in an integrated manner using FLUKA Monte Carlo simulations. The 2-m-thick partition wall between two adjoining treatment rooms had a three-layered structure, which comprised a 0.2-m-thick iron layer sandwiched between two layers of 0.

View Article and Find Full Text PDF

Recent experimental studies showed that electrically coupled neural networks like in mammalian inferior olive nucleus generate synchronized rhythmic activity by the subthreshold sinusoidal-like oscillations of the membrane voltage. Understanding the basic mechanism and its implication of such phenomena in the nervous system bears fundamental importance and requires preemptively the connectome information of a given nervous system. Inspired by these necessities of developing a theoretical and computational model to this end and, however, in the absence of connectome information for the inferior olive nucleus, here we investigated interference phenomena of the subthreshold oscillations in the reference system for which the structural anatomical connectome was completely known recently.

View Article and Find Full Text PDF

Higher Aircraft Noise Exposure Is Linked to Worse Heart Structure and Function by Cardiovascular MRI.

J Am Coll Cardiol

December 2024

UCL MRC Unit for Lifelong Health and Ageing, University College London, London, United Kingdom; UCL Institute of Cardiovascular Science, University College London, London, United Kingdom; Centre for Inherited Heart Muscle Conditions, Cardiology Department, Royal Free Hospital, London, United Kingdom. Electronic address:

Background: Aircraft noise is a growing concern for communities living near airports.

Objectives: This study aimed to explore the impact of aircraft noise on heart structure and function.

Methods: Nighttime aircraft noise levels (L) and weighted 24-hour day-evening-night aircraft noise levels (L) were provided by the UK Civil Aviation Authority for 2011.

View Article and Find Full Text PDF

Multiscale integral synchronous assembly of cuttlebone-inspired structural materials by predesigned hydrogels.

Nat Commun

January 2025

Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.

The overall structural integrity plays a vital role in the unique performance of living organisms, but the integral synchronous preparation of different multiscale architectures remains challenging. Inspired by the cuttlebone's rigid cavity-wall structure with excellent energy absorption, we develop a robust hierarchical predesigned hydrogel assembly strategy to integrally synchronously assemble multiple organic and inorganic micro-nano building blocks to different structures. The two types of predesigned hydrogels, combined with hydrogen, covalent bonding, and electrostatic interactions, are layer-by-layer assembled into brick-and-mortar structures and close-packed rigid micro hollow structures in a cuttlebone-inspired structural material, respectively.

View Article and Find Full Text PDF

Highly expressed cell wall genes contribute to robustness of sepal size.

Plant Signal Behav

December 2025

Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, UCBL, Lyon, France.

Reproducibility in organ size and shape is a fascinating trait of living organisms. The mechanisms underlying such robustness remain, however, to be elucidated. Taking the sepal of Arabidopsis as a model, we investigated whether variability of gene expression plays a role in variation of organ size and shape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!